EPJ Appl. Metamat.
Volume 8, 2021
Metamaterial Research Updates from China
Article Number 11
Number of page(s) 19
Published online 20 April 2021
  1. J. Huang, P. Du, L. Hong, Y. Dong, M. Hong, A novel percolative ferromagnetic-ferroelectric composite with significant dielectric and magnetic properties, Adv. Mater. 19, 437 (2007) [CrossRef] [Google Scholar]
  2. A.D.M. Charles, A.N. Rider, S.A. Brown, C.H. Wang, Multifunctional magneto-polymer matrix composites for electromagnetic interference suppression, sensors and actuators, Prog. Mater. Sci. 115, 100705 (2021) [CrossRef] [Google Scholar]
  3. J. Gou, X. Liu, C. Zhang, G. Sun, Y. Shi, J. Wang, H. Chen, T. Ma, X. Ren, Ferromagnetic composite with stress-insensitive magnetic permeability: dompensation of stress-induced anisotropies, Phys. Rev. Mater. 2, 114406 (2018) [CrossRef] [Google Scholar]
  4. S.A. Ramakrishna, Physics of negative refractive index materials, Rep. Prog. Phys. 68, 449 (2005) [CrossRef] [Google Scholar]
  5. K. Sun, R. Fan, X. Zhang, Z. Zhang, Z. Shi, P. Xie, Z. Wang, G. Fan, N. Wang, C. Liu, T. Li, C. Yan, Z. Guo, An overview of metamaterials and their achievements in wireless power transfer, J. Mater. Chem. C 6, 2925 (2018) [CrossRef] [Google Scholar]
  6. J.B. Pendry, A.J. Holden, W.J. Stewart, I.I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, 4773 (1996) [CrossRef] [PubMed] [Google Scholar]
  7. G. He, R. Wu, Y. Poo, P. Chen, Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh, J. Appl. Phys. 107, 093522 (2010) [CrossRef] [Google Scholar]
  8. Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mie resonance-based dielectric metamaterials, Mater. Today 12, 60 (2009) [CrossRef] [Google Scholar]
  9. D.R. Smith, W.J. Padilla, D. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000) [CrossRef] [PubMed] [Google Scholar]
  10. Y. Dong, H. Yang, L. Zhang, X. Li, D. Ding, X. Wang, J. Li, J. Li, I.W. Chen, Ultra-uniform nanocrystalline materials via two-step sintering, Adv. Funct. Mater. 31, 2007750 (2020) [CrossRef] [Google Scholar]
  11. L.J. Huang, L. Geng, H.X. Peng, Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog. Mater. Sci. 71, 93 (2015) [CrossRef] [Google Scholar]
  12. S.T. Chui, L. Hu, Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites, Phys. Rev. B 65, 1444071 (2002) [Google Scholar]
  13. J.P. Calame, J. Battat, Narrowband microwave dielectric resonance and negative permittivity behavior in hydrogen–fired Al2O3-CuO composites, J. Am. Ceram. Soc. 89, 3865 (2006) [CrossRef] [Google Scholar]
  14. P.B. Johnson, R.W. Christy, Optical constants of the noble metals, Phys. Rev. B 6, 4370 (1972) [CrossRef] [Google Scholar]
  15. Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, H. Hosono, A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium, Adv. Mater. 29, 1700754 (2017) [CrossRef] [Google Scholar]
  16. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77 (2001) [CrossRef] [PubMed] [Google Scholar]
  17. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ɛ and µ , Sov. Phys. Usp. 10, 509 (1968) [CrossRef] [Google Scholar]
  18. W.J. Padilla, D.N. Basov, D.R. Smith, Negative refractive index metamaterials, Mater. Today 9, 28 (2006) [CrossRef] [Google Scholar]
  19. B. Li, G. Sui, W. Zhong, Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity, Adv. Mater. 21, 4176 (2010) [CrossRef] [Google Scholar]
  20. T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold, Appl. Phys. Lett. 102, 181904 (2013) [CrossRef] [Google Scholar]
  21. K. Sun, R. Fan, Z. Zhang, K. Yan, X. Zhang, P. Xie, M. Yu, S. Pan, The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range, Appl. Phys. Lett. 106, 172902 (2015) [CrossRef] [Google Scholar]
  22. A. Neiman, N. Pestereva, A. Sharafutdinov, Y. Kostikov, Conduction and transport numbers in metacomposites MeWO4· WO3 (Me=Ca, Sr, Ba), Russ. J. Electrochem. 41, 598 (2005) [CrossRef] [Google Scholar]
  23. D. Estevez, F. Qin, Y. Luo, L. Quan, Y. Mai, L. Panina, H. Peng, Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites, Compos. Sci. Technol. 171, 206 (2019) [CrossRef] [Google Scholar]
  24. T. Kasagi, T. Tsutaoka, K. Hatakeyama, Electromagnetic properties of permendur granular composite materials containing flaky particles, J. Appl. Phys. 116, 153901 (2014) [CrossRef] [Google Scholar]
  25. Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.K. Kim, Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding, ACS Appl. Mater. Interfaces 9, 9059 (2017) [CrossRef] [Google Scholar]
  26. Z. Wang, K. Sun, P. Xie, Y. Liu, Q. Gu, R. Fan, J. Wang, Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity, J. Materiomics 6, 145 (2020) [CrossRef] [Google Scholar]
  27. Z. Wang, J. Fan, X. Guo, J. Ji, Z. Sun, Enhanced permittivity of negative permittivity middle-layer sandwich polymer matrix composites through conductive filling with flake MAX phase ceramics, RSC Adv. 1, 2725 (2020) [Google Scholar]
  28. H. Yan, C. Zhao, K. Wang, L. Deng, M. Ma, G. Xu, Negative dielectric constant manifested by static electricity, Appl. Phys. Lett. 102, 062904 (2013) [CrossRef] [Google Scholar]
  29. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999) [Google Scholar]
  30. J.B. Pendry, D.R. Smith, Reversing light with negative refraction, Phys. Today 57, 37 (2004) [CrossRef] [Google Scholar]
  31. C. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation, Annu. Rev. Mater. Res. 40, 131 (2010) [CrossRef] [Google Scholar]
  32. K. Wu, Y. Xue, W. Yang, S. Chai, F. Chen, Q. Fu, Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite-Multi-wall carbon nanotubes ternary composites, Compos. Sci. Technol. 130, 28 (2016) [Google Scholar]
  33. Y. Shen, X. Zhang, M. Li, Y. Lin, C. Nan, Polymer nanocomposite dielectrics for electrical energy storage, Natl. Sci. Rev. 4, 23 (2017) [Google Scholar]
  34. H. Du, X. Lin, H. Zheng, B. Qu, Y. Huang, D. Chu, Colossal permittivity in percolative ceramic/metal dielectric composites, J. Alloys Compd. 663, 848 (2016) [Google Scholar]
  35. N. Xu, Y.P. Pu, Z. Wang, Large Dielectric constant and maxwell-wagner effects in BaTiO3/Cu composites, J. Am. Ceram. Soc. 95, 999 (2012) [Google Scholar]
  36. C. Pecharroman, F. Esteban-Betegon, J.F. Bartolome, S. Lopez-Esteban, J.S. Moya, New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant (εr ≈ 80000), Adv. Mater. 13, 1541 (2001) [Google Scholar]
  37. C. Pecharromán, J.S. Moya, Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold, Adv. Mater. 12, 294 (2000) [Google Scholar]
  38. G. Fan, Z. Wang, H. Ren, Y. Liu, R. Fan, Dielectric dispersion of copper/rutile cermets: dielectric resonance, relaxation, and plasma oscillation, Scr. Mater. 190, 1 (2021) [Google Scholar]
  39. G. Fan, Z. Wang, Z. Wei, Y. Liu, R. Fan, Negative dielectric permittivity and high-frequency diamagnetic responses of percolated nickel/rutile cermets, Compos. Part A 139, 106132 (2020) [Google Scholar]
  40. Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang, L. Yin, Random composites of nickel networks supported by porous alumina toward double negative materials, Adv. Mater. 24, 2349 (2012) [CrossRef] [Google Scholar]
  41. Z. Shi, R. Fan, K. Yan, K. Sun, M. Zhang, C. Wang, X. Liu, X. Zhang, Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability, Adv. Funct. Mater. 23, 4123 (2013) [Google Scholar]
  42. Z. Shi, R. Fan, X. Wang, Z. Zhang, L. Qian, L. Yin, Y. Bai, Radio-frequency permeability and permittivity spectra of copper/yttrium iron garnet cermet prepared at low temperatures, J. Eur. Ceram. Soc. 35, 1219 (2015) [Google Scholar]
  43. X. Wang, Z. Shi, M. Chen, R. Fan, K. Yan, K. Sun, S. Pan, M. Yu, Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method, J. Am. Ceram. Soc. 97, 3223 (2015) [Google Scholar]
  44. G. Fan, Y. Zhao, J. Xin, Z. Zhang, P. Xie, C. Cheng, Y. Qu, Y. Liu, K. Sun, R. Fan, Negative permittivity in titanium nitride‐alumina composite for functionalized structural ceramics, J. Am. Ceram. Soc. 103, 403 (2020) [Google Scholar]
  45. Z. Wang, K. Sun, P. Xie, Y. Liu, R. Fan, Generation mechanism of negative permittivity and Kramers-Kronig relations in BaTiO3/Y3Fe5O12 multiferroic composites, J. Phys.: Condens. Matter 29, 365703 (2017) [Google Scholar]
  46. Y. Bai, J. Zhou, Y. Sun, B. Li, Z. Yue, Z. Gui, L. Li, Effect of electromagnetic environment on the dielectric resonance in the ferroelectric-ferromagnetic composite, Appl. Phys. Lett. 89, 112907 (2006) [Google Scholar]
  47. Q. Li, S. Bao, Y. Sun, J. Li, Z. Yu, Y. Li, S. Zhang, Y. Liu, Z. Cheng, Tunable dielectric resonance with negative permittivity behavior of BiFeO3-Bi2Fe4O9 composite at about 1 GHz, J. Alloys Compd. 735, 2081 (2018) [Google Scholar]
  48. Z. Wang, H. Li, H. Hu, Y. Fan, R. Fan, B. Li, J. Zhang, H. Liu, J. Fan, H. Hou, F. Dang, Z. Kou, Z. Guo, Direct observation of stable negative capacitance in SrTiO3@BaTiO3 heterostructure, Adv. Electron. Mater. 6, 1901005 (2020) [Google Scholar]
  49. J.D.L.S. Guerra, J.A. Eiras, Mechanical and electrical driving field induced high-frequency dielectric anomalies in ferroelectric systems, J. Phys.: Condens. Matter 19, 386217 (2007) [Google Scholar]
  50. X. Yin, L. Kong, L. Zhang, L. Cheng, N. Travitzky, P. Greil, Electromagnetic properties of Si-C-N based ceramics and composites, Int. Mater. Rev. 59, 326 (2014) [Google Scholar]
  51. L. Chen, X. Yin, X. Fan, M. Chen, X. Ma, L. Cheng, L. Zhang, Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites, Carbon 95, 10 (2015) [Google Scholar]
  52. J. Ru, Y. Fan, W. Zhou, Z. Zhou, T. Wang, R. Liu, J. Yang, X. Lu, J. Wang, C. Ji, L. Wang, W. Jiang, Electrically conductive and mechanically strong graphene/mullite ceramic composites for high-performance electromagnetic interference shielding, ACS Appl. Mater. Interfaces 10, 39245 (2018) [Google Scholar]
  53. X. Jin, X. Fan, C. Lu, T. Wang, Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites, J. Eur. Ceram. Soc. 38, 1 (2018) [Google Scholar]
  54. Y. Dong, L. Ma, C.Y. Tang, F. Yang, X. Quan, D. Jassby, M.J. Zaworotko, M.D. Guiver, Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes, Nano Lett. 18, 5514 (2018) [Google Scholar]
  55. Q. Zhang, D. Lin, B. Deng, X. Xu, Q. Nian, S. Jin, K.D. Leedy, H. Li, G. Cheng, Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial, Adv. Mater. 29, 1605506 (2017) [Google Scholar]
  56. C. Sun, Y. Huang, Q. Shen, W. Wang, W. Pan, P. Zong, L. Yang, Y. Xing, C. Wan, Embedding two-dimensional graphene array in ceramic matrix, Sci. Adv. 6, eabb1338 (2020) [Google Scholar]
  57. C. Cheng, K. Yan, R. Fan, L. Qian, Z. Zhang, K. Sun, M. Chen, Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach, Carbon 96, 678 (2016) [Google Scholar]
  58. C. Cheng, R. Fan, Z. Wang, Q. Shao, X. Guo, P. Xie, Y. Yin, Y. Zhang, L. An, Y. Lei, J.E. Ryu, A. Shankar, Z. Guo, Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures, Carbon 125, 103 (2017) [Google Scholar]
  59. C. Cheng, R. Fan, Z. Wang, P. Xie, C. Hou, G. Fan, Y. Lei, L. An, Y. Liu, Radio-frequency negative permittivity in the graphene/silicon nitride composites prepared by spark plasma sintering, J. Am. Ceram. Soc. 101, 1598 (2018) [Google Scholar]
  60. C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Z. Guo, Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites, Nanoscale 9, 5779 (2017) [Google Scholar]
  61. R. Yin, Y. Zhang, W. Zhao, X. Huang, X. Li, L. Qian, Graphene platelets/aluminium nitride metacomposites with double percolation property of thermal and electrical conductivity, J. Eur. Ceram. Soc. 38, 4701 (2018) [Google Scholar]
  62. Y. Qu, J. Lin, J. Wu, Z. Wang, K. Sun, M. Chen, B. Dong, Z. Guo, R. Fan, Graphene-carbon black/CaCu3Ti4O12 ternary metacomposites toward a tunable and weakly ε-negative property at the radio-frequency region, J. Phys. Chem. C 124, 23361 (2020) [Google Scholar]
  63. R. Singh, A. Chakravarty, S. Mishra, R.C. Prajapati, J. Dutta, I.K. Bhat, U. Pandel, S.K. Biswas, K. Muraleedharan, AlN-SWCNT metacomposites having tunable negative permittivity in radio and microwave frequencies, ACS Appl. Mater. Interfaces 11, 48212 (2019) [Google Scholar]
  64. C. Cheng, R. Fan, L. Qian, X. Wang, L. Dong, Y. Yin, Tunable negative permittivity behavior of random carbon/alumina composites in the radio frequency band, RSC Adv. 6, 87153 (2016) [Google Scholar]
  65. Z. Dang, J. Yuan, J. Zha, T. Zhou, S. Li, G. Hu, Fundamentals, processes and applications of high-permittivity polymer-matrix composites, Prog. Mater. Sci. 57, 660 (2012) [CrossRef] [Google Scholar]
  66. P. Wang, Z. Pan, M. Wang, S. Huang, J. Liu, J. Zhai, Polypyrrole random-coil induced permittivity from negative to positive in all-organic composite films, J. Materiomics 6, 348 (2020) [Google Scholar]
  67. F. Liu, Q. Li, J. Cui, Z. Li, G. Yang, Y. Liu, L. Dong, C. Xiong, H. Wang, Q. Wang, High-energy-density dielectric polymer nanocomposites with trilayered architecture, Adv. Funct. Mater. 27, 1606292 (2017) [Google Scholar]
  68. H. Gu, H. Zhang, C. Ma, S.Y. Lyu, F. Yao, C. Liang, X. Yang, J. Guo, Z. Guo, J. Gu, Polyaniline assisted uniform dispersion for magnetic ultrafine barium ferrite nanorods reinforced epoxy metacomposites with tailorable negative permittivity, J. Phys. Chem. C 121, 13265 (2017) [Google Scholar]
  69. K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J.E. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, R. Fan, D. Cao, Z. Guo, Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity, Polymer 125, 50 (2017) [CrossRef] [Google Scholar]
  70. K. Sun, J. Dong, Z. Wang, Z. Wang, G. Fan, Q. Hou, L. An, M. Dong, R. Fan, Z. Guo, Tunable negative permittivity in flexible graphene/PDMS metacomposites, J. Phys. Chem. C 123, 23635 (2019) [Google Scholar]
  71. K. Sun, Z. Wang, J. Xin, Z. Wang, P. Xie, G. Fan, V. Murugadoss, R. Fan, J. Fan, Z. Guo, Hydrosoluble graphene/polyvinyl alcohol membranous composites with negative permittivity behavior, Macromol. Mater. Eng. 305, 1900709 (2020) [Google Scholar]
  72. K. Sun, J. Qin, Z. Wang, Y. An, X. Li, B. Dong, X. Wu, Z. Guo, R. Fan, Polyvinyl alcohol/carbon fibers composites with tunable negative permittivity behavior, Surf. Interfaces 21, 100735 (2020) [CrossRef] [Google Scholar]
  73. Z. Wang, K. Sun, H. Wu, P. Xie, Z. Wang, X. Li, R. Fan, Compressible sliver nanowires/polyurethane sponge metacomposites with weakly negative permittivity controlled by elastic deformation, J. Mater. Sci. 55, 15481 (2020) [CrossRef] [Google Scholar]
  74. Y. Sun, J. Wang, S. Qi, G. Tian, D. Wu, Permittivity transition from highly positive to negative: polyimide/carbon nanotube composite's dielectric behavior around percolation threshold, Appl. Phys. Lett. 107, 012905 (2015) [Google Scholar]
  75. Z. Jiao, D.R. D'Hooge, L. Cardon, J. Qiu, Elegant design of carbon nanotube foams with double continuous structure for metamaterials in a broad frequency range, J. Mater. Chem. C 8, 3226 (2020) [Google Scholar]
  76. H. Massango, T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Complex permeability and permittivity spectra of percolated Fe50Co50/Cu granular composites, J. Magn. Magn. Mater. 442, 403 (2017) [Google Scholar]
  77. P. Xie, K. Sun, Z. Wang, Y. Liu, R. Fan, Z. Zhang, G. Schumacher, Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites, J. Alloys Compd. 725, 1259 (2017) [CrossRef] [Google Scholar]
  78. P. Xie, Z. Wang, K. Sun, C. Cheng, Y. Liu, R. Fan, Regulation mechanism of negative permittivity in percolating composites via building blocks, Appl. Phys. Lett. 111, 112903 (2017) [Google Scholar]
  79. H. Wu, R. Yin, Y. Zhang, Z. Wang, P. Xie, L. Qian, Synergistic effects of carbon nanotubes on negative dielectric properties of graphene-phenolic resin composites, J. Phys. Chem. C 121, 12037 (2017) [Google Scholar]
  80. C. Xu, G. Fan, Y. Qu, Y. Liu, Z. Zhang, R. Fan, Core-shell structured tungsten carbide/polypyrrole metacomposites with tailorable negative permittivity at the radio frequency, Polymer 188, 122125 (2020) [Google Scholar]
  81. K. Yan, R. Fan, M. Chen, K. Sun, L. Yin, H. Li, S. Pan, M. Yu, Perovskite (La, Sr)MnO3 with tunable electrical properties by the Sr-doping effect, J. Alloys Compd. 628, 429 (2015) [Google Scholar]
  82. K. Yan, R. Fan, Z. Shi, M. Chen, L. Qian, Y. Wei, K. Sun, J. Li, Negative permittivity behavior and magnetic performance of perovskite La1-xSrxMnO3 at high-frequency, J. Mater. Chem. C 2, 1028 (2014) [Google Scholar]
  83. Z. Wang, K. Sun, P. Xie, R. Fan, Y. Liu, Q. Gu, J. Wang, Low-loss and temperature-stable negative permittivity in La0.5Sr0.5MnO3 ceramics, J. Eur. Ceram. Soc. 40, 1917 (2020) [Google Scholar]
  84. V.V. Varadan, L. Ji, Temperature dependence of resonances in metamaterials, IEEE Trans. Microwave Theory Tech. 58, 2673 (2010) [Google Scholar]
  85. G. Fan, Z. Wang, K. Sun, Y. Liu, R. Fan, Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions, J. Mater. Sci. Technol. 61, 125 (2021) [Google Scholar]
  86. G. Fan, Z. Wang, K. Sun, Y. Liu, R. Fan, Doping-dependent negative dielectric permittivity realized in mono-phase antimony tin oxide ceramics, J. Mater. Chem. C 8, 11610 (2020) [Google Scholar]
  87. M. Kılıç, Z.G. Özdemir, Y. Karabul, Ö. Karataş, Ö.A. Çataltepe, Negative real permittivity in (Bi0.3Eu0.7)Sr2CaCu2O6.5 ceramic, Physica B 584, 412080 (2020) [Google Scholar]
  88. R.S. Kohlman, J. Joo, Y.Z. Wang, J.P. Pouget, H. Kaneko, T. Ishiguro, A.J. Epstein, Drude metallic response of polypyrrole, Phys. Rev. Lett. 74, 773 (1995) [CrossRef] [PubMed] [Google Scholar]
  89. M. Dressel, M. Dressel, A. Schwartz, A. Schwartz, G. Grüner, G. Grüner, L. Degiorgi, Deviations from drude response in low-dimensional metals: electrodynamics of the metallic state of (TMTSF)2PF6, Phys. Rev. Lett. 77, 398 (1996) [Google Scholar]
  90. X. Xu, Q. Fu, H. Gu, Y. Guo, H. Zhou, J. Zhang, D. Pan, S. Wu, M. Dong, Z. Guo, Polyaniline crystalline nanostructures dependent negative permittivity metamaterials, Polymer 188, 122129 (2020) [Google Scholar]
  91. C. Cheng, R. Fan, G. Fan, H. Liu, J. Zhang, J. Shen, Q. Ma, R. Wei, Z. Guo, Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency, J. Mater. Chem. C 7, 3160 (2019) [Google Scholar]
  92. P. Sreekala, J. Honey, C. Aanandan, Development and characterization of camphor sulphonic acid doped polyaniline film with broadband negative dielectric constant for microwave applications, Mater. Res. Express 5, 056302 (2018) [Google Scholar]
  93. K. Lee, J. Heeger, Crossover to negative dielectric response in the low-frequency spectra of metallic polymers, Phys. Rev. B 68, 035201 (2003) [Google Scholar]
  94. K.L. Gordon, J.H. Kang, C. Park, P.T. Lillehei, J.S. Harrison, A novel negative dielectric constant material based on phosphoric acid doped poly(benzimidazole), J. Appl. Polym. Sci. 125, 2977 (2012) [Google Scholar]
  95. Z. Wang, W. Zhou, L. Dong, X. Sui, H. Cai, J. Zuo, Q. Chen, Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites, J. Alloys Compd. 682, 738 (2016) [Google Scholar]
  96. Y. Wan, W. Yang, S. Yu, R. Sun, C. Wong, W. Liao, Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites, Compos. Sci. Technol. 122, 27 (2016) [Google Scholar]
  97. Q. Zhang, J. Wang, B. Guo, Z. Guo, J. Yu, Electrical conductivity of carbon nanotube-filled miscible poly(phenylene oxide)/polystyrene blends prepared by melt compounding, Composites Part B 176, 107213 (2019) [Google Scholar]
  98. Z. Wang, K. Sun, P. Xie, Y. Liu, Q. Gu, R. Fan, Permittivity transition from positive to negative in acrylic polyurethane-aluminum composites, Compos. Sci. Technol. 188, 107969 (2020) [Google Scholar]
  99. Z. Wang, P. Xie, C. Cheng, G. Fan, Z. Zhang, R. Fan, X. Yin, Regulation mechanism of negative permittivity in poly(p-phenylene sulfide)/multiwall carbon nanotubes composites, Synth. Met. 244, 15 (2018) [Google Scholar]
  100. Y. Qu, Y. Wu, G. Fan, P. Xie, Y. Liu, Z. Zhang, J. Xin, Q. Jiang, K. Sun, R. Fan, Tunable radio-frequency negative permittivity of Carbon/CaCu3Ti4O12 metacomposites, J. Alloys Compd. 834, 155164 (2020) [Google Scholar]
  101. C. Hou, G. Fan, X. Xie, X. Zhang, X. Sun, Y. Zhang, B. Wang, W. Du, R. Fan, TiN/Al2O3 binary ceramics for negative permittivity metacomposites at kHz frequencies, J. Alloys Compd. 855, 157499 (2021) [Google Scholar]
  102. H. Luo, J. Qiu, Carbon nanotube/polyolefin elastomer metacomposites with adjustable radio‐frequency negative permittivity and negative permeability, Adv. Electron. Mater. 5, 1900011 (2019) [Google Scholar]
  103. Z. Shi, R. Fan, Z. Zhang, H. Gong, J. Ouyang, Y. Bai, X. Zhang, L. Yin, Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites, Appl. Phys. Lett. 99, 137401 (2011) [Google Scholar]
  104. A. Patra, Prasad, Effect of LaNiO3 on the impedance and dielectric properties of CoFe2O4: a high temperature study, J. Phys. D: Appl. Phys. 53, 45301 (2020) [Google Scholar]
  105. T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Double negative electromagnetic property of granular composite materials in the microwave range, J. Magn. Magn. Mater. 383, 139 (2015) [CrossRef] [Google Scholar]
  106. T. Tsutaoka, H. Massango, T. Kasagi, S. Yamamoto, K. Hatakeyama, Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites, Appl. Phys. Lett. 108, 191904 (2016) [Google Scholar]
  107. Z. Wang, K. Sun, P. Xie, Q. Hou, Y. Liu, Q. Gu, R. Fan, Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites, Acta Mater. 185, 412 (2020) [Google Scholar]
  108. B. Zhao, C.B. Park, Tunable electromagnetic shielding properties of conductive poly (vinylidene fluoride)/Ni chain composite films with negative permittivity, J. Mater. Chem. C 5, 6954 (2017) [CrossRef] [Google Scholar]
  109. Y. Qing, Q. Wen, F. Luo, W. Zhou, Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band, J. Mater. Chem. C 4, 4853 (2016) [Google Scholar]
  110. C. Cheng, Y. Jiang, X. Sun, J. Shen, T. Wang, G. Fan, R. Fan, Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites, Composites Part A 130, 105753 (2020) [Google Scholar]
  111. J. Yang, X. Zhu, H. Wang, X. Wang, C. Hao, R. Fan, D. Dastan, Z. Shi, Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks, Compos. Part A 131, 105814 (2020) [Google Scholar]
  112. C. Zhang, Z. Shi, F. Mao, C. Yang, X. Zhu, J. Yang, H. Zuo, R. Fan, Flexible polyimide nanocomposites with dc bias induced excellent dielectric tunability and unique nonpercolative negative-k toward intrinsic metamaterials, ACS Appl. Mater. Interfaces 10, 26713 (2018) [Google Scholar]
  113. J. Wang, Z. Shi, F. Mao, S. Chen, X. Wang, Bilayer polymer metacomposites containing negative permittivity layer for new high-k materials, ACS Appl. Mater. Interfaces 9, 1793 (2016) [Google Scholar]
  114. Z. Shi, J. Wang, F. Mao, C. Yang, C. Zhang, R. Fan, Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-k and negative-k layers, J. Mater. Chem. A 5, 14575 (2017) [Google Scholar]
  115. R. Gong, L. Yuan, G. Liang, A. Gu, Preparation and mechanism of high energy density cyanate ester composites with ultralow loss tangent and higher permittivity through building a multilayered structure with conductive, dielectric, and insulating layers, J. Phys. Chem. C 123, 13482 (2019) [Google Scholar]
  116. P. Xie, Z. Zhang, Z. Wang, K. Sun, R. Fan, Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures, Research 2019, 1021368 (2019) [Google Scholar]
  117. S. Sharma, T. Basu, A. Shahee, K. Singh, N. Lalla, E. Sampathkumaran, Complex dielectric and impedance behavior of magnetoelectric Fe2TiO5, J. Alloys Compd. 663, 289 (2016) [Google Scholar]
  118. K. Sun, J. Xin, Y. Li, Z. Wang, Q. Hou, X. Li, X. Wu, R. Fan, K.L. Choy, Negative permittivity derived from inductive characteristic in the percolating Cu/EP metacomposites, J. Mater. Sci. Technol. 35, 2463 (2019) [Google Scholar]
  119. Y. Li, N. Engheta, Capacitor-inspired metamaterial inductors, Phys. Rev. Appl. 10, 054021 (2018) [Google Scholar]
  120. J. Dai, H. Luo, M. Moloney, J. Qiu, Adjustable graphene/polyolefin elastomer epsilon-near-zero metamaterials at radiofrequency range, ACS Appl. Mater. Interfaces 12, 22019 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.