Issue
EPJ Appl. Metamat.
Volume 8, 2021
Metamaterial Research Updates from China
Article Number 9
Number of page(s) 8
DOI https://doi.org/10.1051/epjam/2021001
Published online 10 February 2021
  1. V.G. Veselago, Sov. Phys. Uspekhi. 47, 509 (1968) [Google Scholar]
  2. D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000) [CrossRef] [PubMed] [Google Scholar]
  3. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000) [Google Scholar]
  4. Z. Duan, B.I. Wu, J. Lu, J.A. Kong, M. Chen, J. Appl. Phys. 104, 063303 (2008) [Google Scholar]
  5. Z. Duan, C. Guo, M. Chen, Opt. Express 19, 13825 (2011) [Google Scholar]
  6. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001) [Google Scholar]
  7. N. Seddon, T. Bearpark, Science 302, 1537 (2003) [CrossRef] [PubMed] [Google Scholar]
  8. Z. Duan et al., Nat. Commun. 8, 14901 (2017) [Google Scholar]
  9. J.B. Pendry, A. Holden, D. Robbins, W. Stewart, J. Phys.: Condens. Matter 10, 4785 (1998) [Google Scholar]
  10. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999) [Google Scholar]
  11. D.R. Smith et al., Phys. Rev. Lett. 84, 4184 (2000) [Google Scholar]
  12. L. Liang et al., Sci. China Inf. Sci. 56, 120412 (2013) [Google Scholar]
  13. X. Lu, M.A. Shapiro, R.J. Temkin, Phys. Rev. Spec. Top. Accel. Beams. 18, 1 (2015) [Google Scholar]
  14. Y. Hao, R. Mittra, FDTD Modelling of Metamaterials: Theory and Applications ( Artech House, Norwood, 2008) [Google Scholar]
  15. Y. Wang et al., Appl. Phys. Lett. 107, 1 (2015) [Google Scholar]
  16. Z. Duan, J.S. Hummelt, M.A. Shapiro, R.J. Temkin, Phys. Plasmas 21, 103301 (2014) [Google Scholar]
  17. R. Liu, Q. Cheng, J.Y. Chin, J.J. Mock, T. Cui, D.R. Smith, Opt. Express 17, 21030 (2009) [Google Scholar]
  18. S. Walia et al., Appl. Phys. Rev. 2, 011303 (2015) [CrossRef] [Google Scholar]
  19. X. Fu, T. Cui, Prog. Quantum Electron. 67, 100223 (2019) [Google Scholar]
  20. C.D. Giovampaola, N. Engheta, Nat. Mater. 13, 1115 (2014) [CrossRef] [Google Scholar]
  21. C.L. Holloway, E.F. Kuester, J.A. Gordon, J.O. Hara, J. Booth, D.R. Smith, IEEE Antennas Propag. Mag. 54, 10 (2012) [CrossRef] [Google Scholar]
  22. T.J. Cui, M. Qi, X. Wan, J. Zhao, Q. Cheng, Light Sci. Appl. 3, 218 (2014) [Google Scholar]
  23. R.S. Kshetrimayum, IEEE Potentials 23, 44 (2005) [Google Scholar]
  24. Y. Dong, T. Itoh, IEEE Microw. Mag. 13, 2 (2012) [Google Scholar]
  25. N.I. Zheludev, Y.S. Kivshar, Nat. Mater. 11, 917 (2012) [CrossRef] [Google Scholar]
  26. H. Chen, IEEE Photonics Soc. Winter Top. Meet. Ser. WTM 444, 28 (2010) [Google Scholar]
  27. T. Cui, D.R. Smith, R. Liu, Metamaterials: theory, design, and applications (Springer, New York, Dordrecht, Heidelberg, London, 2009) [Google Scholar]
  28. Q. Zhang, H. Zhang, J. Yin, B. Pan, T. Cui, Sci. Rep. 6, 28256 (2016) [Google Scholar]
  29. H. Zhang, S. Liu, X. Shen, L. Chen, L. Li, T. Cui, Laser Photonics Rev. 9, 83 (2015) [Google Scholar]
  30. F. Wang et al., Prog. Electromagn. Res. C 84, 61 (2018) [Google Scholar]
  31. F. Wang et al., Int. J. Antennas Propag. 2019, 1 (2019) [Google Scholar]
  32. Y.S. Tan, R. Seviour, Europhys. Lett. 87, 34005 (2009) [Google Scholar]
  33. L. Chao, S. Guo, M.N. Afsar, J.R. Sirigiri, Metamaterial based negative refractive index traveling wave tube, 2013 19th IEEE Pulsed Power Conference (PPC), San Francisco, CA, 2013, pp. 1–5, doi: 10.1109/PPC.2013.6627598 [Google Scholar]
  34. D. Starinshak, J. Wilson, NASA/TP. (Report) (2007) 214701 [Google Scholar]
  35. T. Rowe, J.H. Booske, N. Behdad, IEEE Trans. Plasma Sci. 43, 2123 (2015) [Google Scholar]
  36. D. Shiffler, J. Luginsland, D.M. French, J. Watrous, IEEE Trans. Plasma Sci. 38, 1462 (2010) [Google Scholar]
  37. J.K. So et al., Appl. Phys. Lett. 97, 97 (2010) [Google Scholar]
  38. S.C. Yurt, M.I. Fuks, S. Prasad, E. Schamiloglu, Phys. Plasmas 23, 123115 (2016) [Google Scholar]
  39. J.S. Hummelt, X. Lu, H. Xu, I. Mastovsky, M.A. Shapiro, R.J. Temkin, Phys. Rev. Lett. 117, 1 (2016) [Google Scholar]
  40. Y. Wang et al., IEEE Trans. Electron Devices 63, 3747 (2016) [Google Scholar]
  41. A.B. De Alleluia et al., IEEE Trans. Plasma Sci. 48, 1 (2020) [Google Scholar]
  42. X. Tang et al., IEEE Trans. Electron Devices 64, 2376 (2017) [Google Scholar]
  43. J. He, J. Ling, B. Deng, O. Dai, W. Xu, L. Wang, Phys. Plasmas 26, 23104 (2019) [Google Scholar]
  44. H. Seidfaraji, A. Elfrgani, C. Christodoulou, E. Schamiloglu, Phys. Plasmas 26, 073105 (2019) [Google Scholar]
  45. G. Wu et al., IEEE Trans. Electron Devices 65, 1172 (2018) [Google Scholar]
  46. P. Narasimhan, S. Jain, N. Gurjar, N. Kumar, S.K. Ghosh, IEEE Trans. Electron Devices 67, 1227 (2020) [Google Scholar]
  47. X. Wang, Z. Duan, F. Wang et al., A miniaturized high-gain, high-efficiency metamaterial assited S-band extended interaction klystron, 2019 International Vacuum Electronics Conference (IVEC), Busan, Korea (South), 2019, pp. 1–2, doi: 10.1109/IVEC.2019.8744761 [Google Scholar]
  48. X. Wang et al., IEEE Electron Device Lett. 41, 1580 (2020) [Google Scholar]
  49. X. Lu et al., Appl. Phys. Lett. 116, 264102 (2020) [Google Scholar]
  50. X. Lu et al., Appl. Phys. Lett. 117, 073502 (2020) [Google Scholar]
  51. R.K. Parker, R.H. Abrams, B.G. Danly, B. Levush, IEEE Trans. Microw. Theory Tech. 50, 835 (2002) [Google Scholar]
  52. J. Qiu et al., IEEE Microw. Mag. 10, 38 (2009) [Google Scholar]
  53. B.N. Basu, S.K. Datta, J. Electromagnet. Wave Appl. 5071, 1771 (2017) [Google Scholar]
  54. S. Li et al., IEEE Trans. Electron Devices 66, 2758 (2019) [Google Scholar]
  55. S. Li et al., Phys. Plasmas 26, 43107 (2019) [Google Scholar]
  56. G. Caryotakis, National Accelerator Lab. Menlo Park, Ca (United States) (2004) [Google Scholar]
  57. Z. Duan et al., IEEE Trans. Electron Devices 66, 1 (2017) [Google Scholar]
  58. R. Guha, X. Wang, A.K. Varshney, Z. Duan, M.A. Shapiro, B.N. Basu, Metamaterials: technology and applications (CRC Press, Boca Raton, 2020) (to be published) [Google Scholar]
  59. R. Marqués, J. Martel, F. Mesa, F. Medina, Phys. Rev. Lett. 89, 5 (2002) [CrossRef] [Google Scholar]
  60. J. Esteban et al., IEEE Trans. Microw. Theory Tech. 53, 1506 (2005) [Google Scholar]
  61. X. Wang et al., IEEE Trans. Microw. Theory Tech. 67, 2238 (2019) [Google Scholar]
  62. X. Wang, Z. Duan, F. Wang et al., High frequency characteristics of a metamaterial slow wave structure, 2018 IEEE International Vacuum Electronics Conference (IVEC), Monterey, CA, 2018, pp. 345–346, doi: 10.1109/IVEC.2018.8391518 [Google Scholar]
  63. M. Chodorow, T. Wessel-berg, IRE Trans. Electron Devices 8, 44 (1961) [Google Scholar]
  64. X. Wang, H. Luo, X. Zhang et al., Design of a compact and high-efficiency metamaterial extended interaction oscillator, 2020 IEEE International Vacuum Electronics Conference(IVEC), Virtual, 2020 (to be published) [Google Scholar]
  65. Z. Duan et al., in Proceedings of URSI Regional Conference on Radio Science 2020, Varanasi, 2020, p. 1 [Google Scholar]
  66. Z. Duan et al., in Proceedings of the International Vacuum Electronics Conference, London, 2017, p. 1 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.