Issue
EPJ Appl. Metamat.
Volume 6, 2019
Metamaterials Research and Development in China
Article Number 15
Number of page(s) 14
DOI https://doi.org/10.1051/epjam/2019008
Published online 01 April 2019
  1. V.G. Vexelago, The electrodynamics of substances with simultaneous negative values of ε and µ, Sov. Phys. Usp. 10 , 509 (1968) [Google Scholar]
  2. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76 , 4773 (1996) [CrossRef] [PubMed] [Google Scholar]
  3. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47 , 2075 (1999) [Google Scholar]
  4. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292 , 5514 (2001) [Google Scholar]
  5. J.N. Grima, L. Mizzi, K.M. Azzopardi, R. Gatt, Auxetic perforated mechanical metamaterials with randomly oriented cuts, Adv. Mater. 28 , 385 (2016) [CrossRef] [Google Scholar]
  6. B. Bar-On, F.G. Barth, P. Fratzl, Y. Politi, Multiscale structural gradients enhance the biomechanical functionality of the spider fang, Nat. Commun. 4 , 3894 (2013) [Google Scholar]
  7. W. Jiang, H. Ma, M.D. Feng, L.L. Yan, J.F. Wang, J. Wang, S.B. Qu, Origami-inspired building block and parametric design for mechanical metamaterials, J. Phys. D: Appl. Phys. 49 , 315302 (2016) [CrossRef] [Google Scholar]
  8. Z.Y. Liu, X.X. Zhang, Y.W. Mao, Y.Y. Zhu, Z.Y. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science 289 , 1734 (2000) [CrossRef] [PubMed] [Google Scholar]
  9. G.C. Ma, P. Sheng, Acoustic metamaterial: from local resonances to broad horizons, Sci. Adv. 2 , e1501595 (2016) [CrossRef] [Google Scholar]
  10. N.F. Yu, F. Capasso, Flat optics with designer metasurfaces, Science 13 , 139 (2014) [Google Scholar]
  11. D. Lin, P.Y. Fan, E. Hasman, M.L. Brongersma, Dielectric gradient metasurface optical elements, Science 345 , 298 (2014) [CrossRef] [Google Scholar]
  12. T.S. Qiu, J.F. Wang, Y.F. Li, J. Wang, M.B. Yan, S.B. Qu, Magnetless circulator based on phase gradient metasurface, Acta Phys. Sin. 65 , 174101 (2016) [Google Scholar]
  13. S.L. Sun, K.Y. Yang, C.M. Wang, T.K. Juan, W.T. Chen, C.Y. Lian, Q. He, S.Y. Xiao, W.T. Kung, G.Y. Guo, L. Zhou, D.P. Tsai, High-efficiency broadband anomalous reflection by gradient meta-surface, Nano Lett. 12 , 6223 (2012) [CrossRef] [Google Scholar]
  14. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces, Science 339 , 6125 (2013) [CrossRef] [Google Scholar]
  15. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature 455 , 7211 (2008) [CrossRef] [PubMed] [Google Scholar]
  16. D.R. Smith, N. Kroll, Negative refractive index in left-handed materials, Phys. Rev. Lett. 85 , 2933 (2000) [CrossRef] [PubMed] [Google Scholar]
  17. P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar, Photonic crystals: imaging by flat lens using negative refraction, Nature 426 , 6965 (2003) [CrossRef] [PubMed] [Google Scholar]
  18. Z. Jacob, L. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit, Opt. Express 14 , 8247 (2006) [CrossRef] [Google Scholar]
  19. A. Alu, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72 , 016623 (2005) [CrossRef] [Google Scholar]
  20. B. Edwards, A. Alu, M.G. Silveirinha, N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Phys. Rev. Lett. 103 , 153901 (2009) [CrossRef] [Google Scholar]
  21. A. Alu, N. Engheta, Multifrequency optical invisibility cloak with layered plasmonic shells, Phys. Rev. Lett. 100 , 113901 (2008) [CrossRef] [Google Scholar]
  22. E.E. Narimanov, A.V. Kildishev, Optical black hole: broadband omnidirectional light absorber, Appl. Phys. Lett. 95 , 041106 (2009) [CrossRef] [Google Scholar]
  23. Q. Cheng, T.J. Cui, W.X. Jiang, B.G. Cai, An omnidirectional electromagnetic absorber made of metamaterials, New J. Phys. 12 , 063006 (2010) [CrossRef] [Google Scholar]
  24. Y. Yao, R. Shankar, M.A. Kats, Y. Song, J. Kong, F.A. Capasso, Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators, Nano Lett. 12 , 6526 (2014) [CrossRef] [Google Scholar]
  25. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100 , 207402 (2008) [CrossRef] [PubMed] [Google Scholar]
  26. K. Aydin, V.E. Ferry, R.M. Briggs, A. Atwater, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers, Nat. Commun. 2 , 517 (2011) [Google Scholar]
  27. M.B. Pu, P. Chen, C.T. Wang, Y.Q. Wang, Z.Y. Zhao, C.G. Hu, C. Huang, X.G. Luo, Broadband anomalous relfection based on gradient low-Q meta-surface, AIP Adv. 13 , 052136 (2013) [Google Scholar]
  28. C. Menzel, C. Helgert, C. Rockstuhl, E.B. Kley, A. Tunnermann, T. Pertsch, F. Leferer, Asymmetric transmission of linearly polarized light at optical metamaterials, Phys. Rev. Lett. 104 , 253902 (2010) [Google Scholar]
  29. M. Stolarek, D. Yavorskiy, R. Kotynski, C.J.Z. Rodriguez, J. Lusakowski, T. Szoplik, Asymmetric transmission of THz radiation through a double grating, Opt. Lett. 38 , 839 (2013) [Google Scholar]
  30. L. Wu, Z.Y. Yang, Y.Z. Cheng, M. Zhao, R.Z. Gong, Y. Zheng, J.A. Duan, X.H. Yuan, Gaint asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials, Appl. Phys. Lett. 103 , 021903 (2013) [Google Scholar]
  31. S.X. Yu, G.M. Shi, C. Zhu, Y. Shi, Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain, Appl. Phys. Lett. 108 , 241901 (2016) [Google Scholar]
  32. S.X. Yu, L. Li, G.M. Shi, C. Zhu, X.X. Zhou, Y. Shi, Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain, Appl. Phys. Lett. 108 , 121903 (2016) [CrossRef] [Google Scholar]
  33. L. Zhang, S. Liu, L.L. Li, T.J. Cui, Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces, Appl. Mater. Interfaces 9 , 36447 (2017) [CrossRef] [Google Scholar]
  34. X.B. Yin, Z.L. Ye, J. Rho, Y. Wang, X. Zhang, Photonic spin hall effect at metasurfaces, Science 339 , 1405 (2013) [CrossRef] [Google Scholar]
  35. H.Y. Chen, J.F. Wang, H. Ma, S.B. Qu, Z. Xu, A.X. Zhang, M.B. Yan, Y.F. Li, Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances, J. Appl. Phys. 115 , 154504 (2014) [CrossRef] [Google Scholar]
  36. X.M. Fu, J.F. Wang, Y. Fan, M.D. Feng, M.B. Yan, Y.F. Li, H.Y. Chen, J.Q. Zhang, S.B. Qu, Merging bands of polarization convertors by suppressing Fano resonance, Appl. Phys. Lett. 113 , 101901 (2018) [CrossRef] [Google Scholar]
  37. X. Gao, X. Han, W.P. Cao, H.O. Li, H.F. Ma, T.J. Cui, Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface, IEEE Trans. Antennas Propag. 63 , 3522 (2015) [CrossRef] [Google Scholar]
  38. Y.H. Liu, X.P. Zhap, Perfect absorber metamaterial for designing low-RCS patch antenna, IEEE Trans. Antennas Propag. 13 , 1473 (2014) [Google Scholar]
  39. L. Zhang, X. Wan, S. Liu, J.Y. Yin, Q. Zhang, H.T. Wu, T.J. Cui, Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface, IEEE Trans. Antennas Propag. 65 , 3374 (2014) [CrossRef] [Google Scholar]
  40. W.G. Chen, C.A. Balanis, C.R. Birtcher, Checkerboard EBG surface for wideband radar cross section reduction, IEEE Trans. Antennas Propag. 63 , 2636 (2015) [CrossRef] [Google Scholar]
  41. W.B. Pan, C. Huang, P. Chen, X.L. Ma, C.G. Hu, X.G. Luo, A low-RCS and high-gain partially reflecting surface antenna, IEEE Trans. Antennas Propag. 6 , 945 (2014) [CrossRef] [Google Scholar]
  42. K. Li, Y. Liu, Y.T. Jia, Y.J. Guo, A circularly polarized high gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces, IEEE Trans. Antennas Propag. 65 , 4288 (2017) [CrossRef] [Google Scholar]
  43. L.J. Liang, M.G. Wei, X. Yan, D.Q. Wei, D. Liang, J.G. Han, X. Ding, G.Y. Zhang, J.Q. Yao, Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies, Sci. Rep. 6 , 39252 (2016) [CrossRef] [Google Scholar]
  44. X. Liu, J. Gao, L.M. Xu, X.Y. Cao, Y. Zhao, S.J. Li, A coding diffuse metasurface for RCS reduction, IEEE Antennas Wirel. Propag. Lett. 16 , 724 (2016) [CrossRef] [Google Scholar]
  45. J.X. Su, Y.Y. Cui, Z.R. Li, Y.Q. Yang, Y.X. Che, H.C. Yin, Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction, AIP Adv. 8 , 035027 (2018) [Google Scholar]
  46. S. Sai, H. Ma, J.F. Wang, Y.Q. Pang, M.D. Feng, Z. Xu, S.B. Qu, Absorptive coding metasurface for further radar cross section reduction, J. Phys. D: Appl. Phys. 51 , 065603 (2018) [CrossRef] [Google Scholar]
  47. D.S. Dong, J. Yang, Q. Cheng, J. Zhao, L.H. Gao, S.J. Ma, S. Liu, H.B. Chen, Q. He, W.W. Liu, Z. Fang, L. Zhou, T.J. Cui, Terahertz broadband low-reflection metasurface by controlling phase distributions, Adv. Opt. Mater. 3 , 1405 (2015) [CrossRef] [Google Scholar]
  48. S.J. Li, X.Y. Cao, L.M. Xu, L.J. Zhou, H.H. Yang, J.F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y.J. Zheng, Y. Zhao, Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm, Sci. Rep. 5 , 37409 (2016) [Google Scholar]
  49. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312 , 1780 (2006) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  50. U. Leonhardt, Optical conformal mapping, Science 312 , 5781 (2006) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  51. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314 , 5801 (2006) [Google Scholar]
  52. W.X. Jiang, J.Y. Chin, Z. Li, Q. Cheng, R.P. Liu, T.J. Cui, Analytical design of conformally invisible cloaks for arbitrarily shaped objects, Phys. Rev. E 77 , 066607 (2008) [CrossRef] [Google Scholar]
  53. H. Ma, S.B. Qu, Z. Xu, J.F. Wang, The open cloak, Appl. Phys. Lett. 94 , 103501 (2009) [CrossRef] [Google Scholar]
  54. H. Ma, S.B. Qu, Z. Xu, J.Q. Zhang, J.F. Wang, The simplified material parameter equation for elliptical cylinder cloaks, Chin. Phys. B 18 , 1850 (2009) [CrossRef] [Google Scholar]
  55. P. Alitalo, F. Bongard, J.-F. Zürcher, J. Mosig, S. Tretyakov, Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks, Appl. Phys. Lett. 94 , 1 (2009) [CrossRef] [Google Scholar]
  56. S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, Broadband electromagnetic cloaking of long cylindrical objects, Phys. Rev. Lett. 103 , 103905 (2009) [CrossRef] [Google Scholar]
  57. Y.F. Li, J.Q. Zhang, S.B. Qu, J.F. Wang, L. Zheng, H. Zhou, Z. Xu, A.X. Zhang, Wide-band circular polarization-keeping reflection mediated by metasurface, Chin. Phys. B 24 , 014202 (2015) [CrossRef] [Google Scholar]
  58. X.M. Ding, F. Monticone, K. Zhang, L. Zhang, D.L. Gao, S.N. Burokur, A.D. Lustrac, Q. Wu, C.W. Qiu, A. Alu, Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency, Adv. Mater. 27 , 1195 (2014) [CrossRef] [Google Scholar]
  59. N.F. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334 , 6054 (2011) [Google Scholar]
  60. S.L. Sun, Q. He, S.Y. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surface as a bridge linking propagating waves and surface waves, Nat. Mater. 11 , 426 (2012) [CrossRef] [Google Scholar]
  61. C.D. Giovampaola, N. Engheta, Digital metamaterials, Nat. Mater. 13 , 115 (2014) [Google Scholar]
  62. T. Koschny, M. Kafesaki, E.N. Economou, C.M. Soukoulis, Effective medium theory of left-handed materials, Phys. Rev. Lett. 93 , 107402 (2004) [CrossRef] [PubMed] [Google Scholar]
  63. X.J. Zhang, Y. Wu, Effective medium theory for anisotropic metamaterials, Sci. Rep. 5 , 07892 (2015) [CrossRef] [Google Scholar]
  64. A. Alu, A. Salandrino, N. Engheta, Negative effective permeability and left-handed materials at optical frequencies, Opt. Express 14 , 1557 (2006) [CrossRef] [Google Scholar]
  65. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials, Light Sci. Appl. 3 , e218 (2014) [CrossRef] [Google Scholar]
  66. L.H. Gao, Q. Cheng, J. Yang, S.J. Ma, J. Zhao, S. Liu, H.B. Chen, Q. He, W.X. Jiang, H.F. Ma, Q.Y. Wen, L.J. Liang, B.B. Jin, W.W. Liu, L. Zhou, J.Q. Yao, P.H. Wu, T.J. Cui, Broadband diffusion of terahertz waves by multi-bit coding metasurface, Light Sci. Appl. 4 , e324 (2015) [CrossRef] [Google Scholar]
  67. S. Liu, T.J. Cui, Q. Xu, D. Bao, L.L. Du, X. Wan, W.X. Tang, C.M. Ouyang, X.Y. Zhou, H. Yuan, H.F. Ma, W.X. Jiang, J.G. Han, W.L. Zhang, Q. Cheng, Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves, Light Sci. Appl. 5 , e16076 (2016) [CrossRef] [Google Scholar]
  68. X. Yan, L.J. Liang, J. Yang, W.W. Liu, X. Ding, D.G. Xu, Y.T. Zhang, T.J. Cui, J.Q. Yao, Broadband, wide-angle, low scattering terahertz wave by a flexible 2-bit coding metasurface, Opt. Express 23 , 29128 (2015) [CrossRef] [Google Scholar]
  69. R.L. Fante, M.T. MCcormack, Reflection properties of the Salisbury screen, IEEE Trans. Antennas Propag. 36 , 1443 (1988) [CrossRef] [Google Scholar]
  70. N. Engheta, Thin absorbing screens using metamaterial surfaces, in: IEEE AP-S International Symposium, San Antonio, Texas, June 16–21, 2002 [Google Scholar]
  71. D.J. Kern, D.H. Werner, A genetic algorithm approach to the design of ultra-thin electromagnetic band-gap absorbers, Microw. Opt. Technol. Lett. 38 , 61 (2003) [CrossRef] [Google Scholar]
  72. H. Mosallaei, K. Sarabandi, A one-layer ultra-thin meta-surface absorber, Soc. Int. Symp. 1b , 615 (2005) [Google Scholar]
  73. X.Y. Peng, B. Wang, S.M. Lai, D.H. Zhang, J.H. Teng, Ultrathin multi-band planar metamaterial absorber based on standing wave resonances, Opt. Express 20 , 27756 (2012) [CrossRef] [PubMed] [Google Scholar]
  74. R. Yahiaoui, J.P. Guillet, F.D. Miollis, P. Mounaix, Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications, Opt. Lett. 38 , 4988 (2013) [CrossRef] [PubMed] [Google Scholar]
  75. W.R. Zhu, I.D. Rukhlenko, F.J. Xiao, C. He, J.P. Geng, X.L. Liang, M. Premaratne, R. Jin, Multiband coherent perfect absorption in a water-based metasurface, Opt. Express 25 , 15737 (2017) [CrossRef] [Google Scholar]
  76. J.F. Wang, S.B. Qu, Z. Xu, H. Ma, X.H. Wang, D.Q. Huang, Y.F. Li, Super-thin cloaks mediated by spoof surface plasmons, Photonics Nanostruct. Fundam. Appl. 10 , 540 (2012) [CrossRef] [Google Scholar]
  77. J.F. Wang, S.B. Qu, Z. Xu, H. Ma, C.M. Wang, S. Xia, X.H. Wang, H. Zhou, Grating-coupled waveguide cloaking, Chin. Phys. Lett. 29 , 034101 (2012) [CrossRef] [Google Scholar]
  78. J.F. Wang, S.B. Qu, Z. Xu, H. Ma, J.Q. Zhang, Y.H. Li, X.H. Wang, Super-thin cloaks based on microwave networks, IEEE Trans. Antennas Propag. 61 , 2 (2013) [CrossRef] [Google Scholar]
  79. Y.F. Li, J.Q. Zhang, S.B. Qu, J.F. Wang, Y.Q. Pang, Z. Xu, A.X. Zhang, Broadband unidirectional cloaks based on flat metasurface focusing lenses, J. Phys. D: Appl. Phys. 48 , 335101 (2015) [CrossRef] [Google Scholar]
  80. J.F. Wang, S.B. Qu, H. Ma, Z. Xu, A.X. Zhang, H. Zhou, H.Y. Chen, Y.F. Li, High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces, Appl. Phys. Lett. 101 , 201104 (2012) [CrossRef] [Google Scholar]
  81. Y.F. Li, J.Q. Zhang, S.B. Qu, J.F. Wang, H.Y. Chen, Z. Xu, A.X. Zhang, Wideband radar cross section reduction using two-dimensional phase gradient metasurface, Appl. Phys. Lett. 104 , 221110 (2014) [CrossRef] [Google Scholar]
  82. H.Y. Chen, H. Ma, J.F. Wang, S.B. Qu, Y.F. Li, J. Wang, M.B. Yan, Y.Q. Pang, A wideband deflected reflection based on multiple resonances, Appl. Phys. A 120 , 287 (2015) [CrossRef] [Google Scholar]
  83. Y. Fan, S.B. Qu, J.F. Wang, J.Q. Zhang, M.D. Feng, A.X. Zhang, Broadband anomalous reflector based on cross-polarized version phase gradient metasurface, Acta. Phys. Sin. 64 , 184101 (2015) [Google Scholar]
  84. Y.F. Li, J.Q. Zhang, S.B. Qu, J.F. Wang, H.Y. Chen, L. Zheng, Z. Xu, A.X. Zhang, Achieving wideband polarization-independent anomalous reflection for linearly polarized waves with dispersionless phase gradient metasurfaces, J. Phys. D: Appl. Phys. 47 , 425103 (2014) [Google Scholar]
  85. L. Zhang, X.Q. Chen, S. Liu, Q. Zhang, J. Zhao, J.Y. Dai, G.D. Bai, X. Wan, Q. Cheng, G. Castaldi, V. Galdi, T.J. Cui, Space-time-coding digital metasurface, Nat. Commun. 9 , 1 (2018) [CrossRef] [Google Scholar]
  86. M. Moccia, S. Liu, R.Y. Wu, G. Castaldi, A. Andreone, T.J. Cui, V. Galdi, Coding metasurfaces for diffuse scattering: scaling laws, bounds, and suboptimal design, Adv. Opt. Mater. 5 , 19 (2017) [Google Scholar]
  87. L. Zhang, R.Y. Wu, G.D. Bai, H.T. Wu, Q. Ma, X.Q. Chen, T.J. Cui, Transmission-reflection-integrated multifunctional coding metasurface for full-space control of electromagnetic waves, Adv. Funct. Mater. 28 , 33 (2018) [Google Scholar]
  88. M. Moccia, C. Koral, G.P. Papari, S. Liu, L. Zhang, R.Y. Wu, G. Castaldi, T.J. Cui, V. Galdi, A. Andreone, Suboptimal coding metasurfaces for terahertz diffuse scattering, Sci. Rep. 8 , 1 (2018) [CrossRef] [Google Scholar]
  89. S. Sui, H. Ma, J.F. Wang, Y.Q. Pang, S.B. Qu, Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber, J. Phys. D: Appl. Phys. 48 , 215101 (2015) [CrossRef] [Google Scholar]
  90. S. Sai, H. Ma, Y.G. Lv, J.F. Wang, Z.Q. Li, J.Q. Zhang, Z. Xu, S.B. Qu, Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase, Opt. Express 26 , 1443 (2018) [CrossRef] [Google Scholar]
  91. Q.Q. Zheng, Y.F. Li, J.Q. Zhang, H. Ma, J.F. Wang, Y.Q. Pang, Y.J. Han, S. Sui, Y. Shen, H.Y. Chen, S.B. Qu, Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase, Sci. Rep. 7 , 43543 (2017) [CrossRef] [Google Scholar]
  92. M.C. Feng, Y.F. Li, Q.Q. Zheng, J.Q. Zhang, Y.J. Han, J.F. Wang, H.Y. Chen, S. Sai, H. Ma, S.B. Qu, Two-dimensional coding phase gradient metasurface for RCS reduction, J. Phys. D: Appl. Phys. 51 , 375103 (2018) [CrossRef] [Google Scholar]
  93. L.K. Sun, H.F. Cheng, Y.J. Zhou, J. Wang, Broadband metamaterial absorber based on coupling resistive frequency selective surface, Opt. Express 20 , 4675 (2012) [CrossRef] [PubMed] [Google Scholar]
  94. Y. Shen, Z.B. Pei, Y.Q. Pang, J.F. Wang, A.X. Zhang, S.B. Qu, An extremely wideband and lightweight metamaterial absorber, J. Appl. Lett. 117 , 224503 (2015) [Google Scholar]
  95. Y. Shen, Y.Q. Pang, J.F. Wang, H. Ma, Z.B. Pei, S.B. Qu, Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption, J. Phys. D: Appl. Phys. 48 , 445008 (2015) [CrossRef] [Google Scholar]
  96. Y. Fan, J.F. Wang, Y.F. Li, Y.Q. Pang, L. Zheng, J.Y. Xiang, J.Q. Zhang, S.B. Qu, Ultra-thin and -broadband microwave magnetic absorber enhanced by phase gradient metasurface incorporation, J. Phys. D: Appl. Phys. 51 , 215001 (2015) [CrossRef] [Google Scholar]
  97. Y.Q. Pang, J.F. Wang, Q. Cheng, S. Xia, X.Y. Zhou, Z. Xu, T.J. Cui, S.B. Qu, Thermally tunable water-substrate broadband metamaterial absorbers, Appl. Phys. Lett. 110 , 104103 (2017) [CrossRef] [Google Scholar]
  98. Y.Q. Pang, J.F. Wang, H. Ma, M.D. Feng, Y.F. Li, Z. Xu, S. Xia, S.B. Qu, Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption, Sci. Rep. 6 , 29429 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.