Issue
EPJ Appl. Metamat.
Volume 6, 2019
Terahertz metamaterials
Article Number 10
Number of page(s) 9
DOI https://doi.org/10.1051/epjam/2019005
Published online 22 February 2019
  1. C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O'Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54 , 10 (2012) [CrossRef] [Google Scholar]
  2. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces, Science 339 , 1232009 (2013) [Google Scholar]
  3. N. Yu, F. Capasso, Flat optics with designer metasurfaces, Nat. Mater. 13 , 139 (2014) [CrossRef] [PubMed] [Google Scholar]
  4. N. Meinzer, W.L. Barnes, I.R. Hooper, Plasmonic meta-atoms and metasurfaces, Nat. Photonics 8 , 889 (2014) [CrossRef] [Google Scholar]
  5. H.-T. Chen, A.J. Taylor, N. Yu, A review of metasurfaces: physics and applications, Rep. Prog. Phys. 79 , 076401 (2016) [CrossRef] [Google Scholar]
  6. A.J. Ward, J.B. Pendry, Refraction and geometry in Maxwell's equations, J. Mod. Opt. 43 , 773 (1996) [CrossRef] [Google Scholar]
  7. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312 , 1780 (2006) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. U. Leonhardt, Optical conformal mapping, Science 312 , 1777 (2006) [Google Scholar]
  9. J.B. Pendry, A.I. Fernández-Domínguez, Y. Luo, R. Zhao, Capturing photons with transformation optics, Nat. Phys. 9 , 518 (2013) [CrossRef] [Google Scholar]
  10. A. Aubry, D.Y. Lei, S.A. Maier, J.B. Pendry, Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder, Phys. Rev. B: Condens. Matter Mater. Phys. 82 , 125430 (2010) [CrossRef] [Google Scholar]
  11. J.B. Pendry, A. Aubry, D.R. Smith, S.A. Maier, Transformation optics and subwavelength control of light, Science (N.Y.) 337 , 549 (2012) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. P.A. Huidobro, M. Kraft, R. Kun, S.A. Maier, J.B. Pendry, Graphene, plasmons and transformation optics, J. Opt. 18 , 044024 (2016) [CrossRef] [Google Scholar]
  13. P.A. Huidobro, M. Kraft, S.A. Maier, J.B. Pendry, Graphene as a tunable anisotropic or isotropic plasmonic metasurface, ACS Nano 10 , 5499 (2016) [CrossRef] [Google Scholar]
  14. P.A. Huidobro, S.A. Maier, J.B. Pendry, Tunable plasmonic metasurface for perfect absorption, EPJ Appl. Metamat. 4 , 6 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  15. J.B. Pendry, P.A. Huidobro, Y. Luo, E. Galiffi, Compacted dimensions and singular plasmonic surfaces, Science 358 , 915 (2017) [CrossRef] [Google Scholar]
  16. E. Galiffi, J.B. Pendry, P.A. Huidobro, Broadband tunable thz absorption with singular graphene metasurfaces, ACS Nano 12 , 1006 (2018) [CrossRef] [Google Scholar]
  17. F. Yang, P.A. Huidobro, J.B. Pendry, Transformation optics approach to singular metasurfaces, Phys. Rev. B 98 , 125409 (2018) [CrossRef] [Google Scholar]
  18. Y. Luo, J.B. Pendry, A. Aubry, Surface plasmons and singularities, Nano Lett. 10 , 4186 (2010) [CrossRef] [Google Scholar]
  19. J.B. Pendry, A. Aubry, D.R. Smith, S.A. Maier, Transformation optics and subwavelength control of light, Science (N.Y.) 337 , 549 (2012) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Graphene plasmonics: a platform for strong light-matter interaction, Nano Lett. 11 , 3370 (2011) [CrossRef] [PubMed] [Google Scholar]
  21. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol. 6 , 630 (2011) [CrossRef] [PubMed] [Google Scholar]
  22. A.Yu. Nikitin, F. Guinea, F.J. García-Vidal, L. Martín-Moreno, Fields radiated by a nanoemitter in a graphene sheet, Phys. Rev. B: Condens. Matter Mater. Phys. 84 , 195446 (2011) [CrossRef] [Google Scholar]
  23. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics, Nat. Photonics 6 , 749 (2012) [CrossRef] [Google Scholar]
  24. F.J.G. de Abajo, Graphene plasmonics: challenges and opportunities, ACS Photonics 1 , 135 (2014) [CrossRef] [Google Scholar]
  25. T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8 , 1086 (2014) [CrossRef] [Google Scholar]
  26. N.M.R. Peres, Y.V. Bludov, A. Ferreira, M.I. Vasilevskiy, Exact solution for squarewave grating covered with graphene: surface plasmon-polaritons in the terahertz range, J. Phys.: Condens. Matter 25 , 125303 (2013) [CrossRef] [Google Scholar]
  27. T.M. Slipchenko, M.L. Nesterov, L. Martin-Moreno, A.Yu. Nikitin, Analytical solution for the diffraction of an electromagnetic wave by a graphene grating, J. Opt. (Bristol, UK) 15 , 114008 (2013) [Google Scholar]
  28. P.-Y. Chen, C. Argyropoulos, M. Farhat, J.S. Gomez-Diaz, Flatland plasmonics and nanophotonics based on grapheme and beyond, Nanophotonics 6 , 1239 (2017) [Google Scholar]
  29. M. Baudisch, A. Marini, J.D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L.S. Levitov, F.J.G. de Abajo et al., Ultrafast nonlinear optical response of Dirac fermions in graphene, Nat. Commun. 9 , 1018 (2018) [CrossRef] [Google Scholar]
  30. M. Bokdam, P.A. Khomyakov, G. Brocks, Z. Zhong, P.J. Kelly, Electrostatic doping of graphene through ultrathin hexagonal boron nitride films, Nano Lett. 11 , 4631 (2011) [CrossRef] [Google Scholar]
  31. Y. Fan, N.-H. Shen, T. Koschny, C.M. Soukoulis, Tunable terahertz meta-surface with graphene cut-wires, ACS Photonics 2 , 151 (2015) [CrossRef] [Google Scholar]
  32. A.Yu. Nikitin, F. Guinea, F.J. Garcia-Vidal, L. Martin-Moreno, Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons, Phys. Rev. B: Condens. Matter Mater. Phys. 85 , 081405(R) (2012) [CrossRef] [Google Scholar]
  33. A. Vakil, N. Engheta, Transformation optics using graphene, Science (N.Y.) 332 , 1291 (2011) [CrossRef] [PubMed] [Google Scholar]
  34. D.A. Iranzo, S. Nanot, E.J.C. Dias, I. Epstein, C. Peng, D.K. Efetov, M.B. Lundeberg, R. Parret, J. Osmond, J.-Y. Hong et al., Probing the ultimate plasmon confinement limits with a van der Waals heterostructure, Science 360 , 291 (2018) [CrossRef] [Google Scholar]
  35. C.-F. Chen, C.-H. Park, B.W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M.F. Crommie, R.A. Segalman, S.G. Louie et al., Controlling inelastic light scattering quantum pathways in grapheme, Nature 471 , 617 (2011) [CrossRef] [Google Scholar]
  36. D.K. Efetov, P. Kim, Controlling electron-phonon interactions in graphene at ultrahigh carrier densities, Phys. Rev. Lett. 105 , 256805 (2010) [CrossRef] [PubMed] [Google Scholar]
  37. M. Farhat, S. Guenneau, H. Bağc ı, Exciting graphene surface plasmon polaritons through light and sound interplay, Phys. Rev. Lett. 111 , 237404 (2013) [CrossRef] [Google Scholar]
  38. J. Schiefele, J. Pedrós, F. Sols, F. Calle, F. Guinea, Coupling light into graphene plasmons through surface acoustic waves, Phys. Rev. Lett. 111 , 237405 (2013) [CrossRef] [Google Scholar]
  39. P.A. Huidobro, Y.H. Chang, M. Kraft, J.B. Pendry, Hidden symmetries in plasmonic gratings, Phys. Rev. B: Condens. Matter Mater. Phys. 95 , 1 (2017) [CrossRef] [Google Scholar]
  40. M. Kraft, Y. Luo, S.A. Maier, J.B. Pendry, Designing plasmonic gratings with transformation optics, Phys. Rev. X 5 , 031029 (2015) [Google Scholar]
  41. M. Kraft, J.B. Pendry, S.A. Maier, Y. Luo, Transformation optics and hidden symmetries, Phys. Rev. B: Condens. Matter Mater. Phys. 89, 245125 (2014) [CrossRef] [Google Scholar]
  42. P.A.D. Gonçalves, N.M.R. Peres, An introduction to graphene plasmonics (World Scientific, Singapore, 2016) [CrossRef] [Google Scholar]
  43. M. Lundeberg, Y. Gao, R. Asgari, C. Tan, B. Van Duppen, M. Autore, P. Alonso-Gonzalez, A. Woessner, K. Watanabe, T. Taniguchi, R. Hillenbrand, J. Hone, M. Polini, F.H.L. Koppens, Tuning quantum non-local effects in graphene plasmonics, Science 2735 , 1 (2017) [Google Scholar]
  44. O. Klein, Quantentheorie und fünfdimensionale relativitätstheorie, Z. Phys. 37 , 895 (1926) [CrossRef] [EDP Sciences] [Google Scholar]
  45. A. Kumar, T. Low, K.H. Fung, P. Avouris, N.X. Fang, Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system, Nano Lett. 15 , 3172 (2015) [CrossRef] [Google Scholar]
  46. A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini et al., Highly confined low-loss plasmons in graphene–boron nitride heterostructures, Nat. Mater. 14 , 421 (2015) [CrossRef] [Google Scholar]
  47. H.-J. Hagemann, W. Gudat, C. Kunz, Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3 , J. Opt. Soc. Am. 65, 742 (1975) [CrossRef] [Google Scholar]
  48. B. Wunsch, T. Stauber, F. Sols, F. Guinea, Dynamical polarization of graphene at finite doping, New J. Phys. 8 , 318 (2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.