EPJ Appl. Metamat.
Volume 5, 2018
Metamaterials'2017 – Metamaterials and Novel Wave Phenomena: Theory, Design and Application
Article Number 7
Number of page(s) 9
Published online 01 June 2018
  1. F. Monticone, A. Alù, The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters, J. Mater. Chem. C 2, 9059 (2014) [CrossRef] [Google Scholar]
  2. L.D. Barron, An introduction to chirality at the nanoscale, in: D.B. Ambilino (Ed.), Chirality at the Nanoscale: Nanoparticles, Surfaces, Materials and More Wiley-VCH, Weinheim, Germany, 2009 [Google Scholar]
  3. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, Probing the magnetic field of light at optical frequencies, Science 326, 550 (2009) [CrossRef] [Google Scholar]
  4. H. Giessen, R. Vogelgesang, Glimpsing the weak magnetic field of light, Science 326, 529 (2009) [CrossRef] [Google Scholar]
  5. T.H. Taminiau, S. Karaveli, N.F. van Hulst, R. Zia, Quantifying the magnetic nature of light emission, Nat. Commun. 3, 979 (2012) [CrossRef] [Google Scholar]
  6. M. Kasperczyk, S. Person, D. Ananias, L.D. Carlos, L. Novotny, Excitation of magnetic dipole transitions at optical frequencies, Phys. Rev. Lett. 114, 163903 (2015) [CrossRef] [Google Scholar]
  7. D. Nowak, W. Morrison, H.K. Wickramasinghe, J. Jahng, E.O. Potma, L. Wan, R. Ruiz, T.R. Albrecht, K. Schmidt, J. Frommer, D.P. Sanders, Nanoscale chemical imaging by photoinduced force microscopy, Sci. Adv. 2, e1501571 (2016) [CrossRef] [Google Scholar]
  8. J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H.K. Wickramasinghe, F. Capolino, Sharply focused azimuthally polarized beams with magnetic dominance: near- field characterization at nanoscale by photoinduced force microscopy, ACS Photonics (2017) DOI: 10.1021/acsphotonics.7b00816 [Google Scholar]
  9. I. Rajapaksa, K. Uenal, H.K. Wickramasinghe, Image force microscopy of molecular resonance: a microscope principle, Appl. Phys. Lett. 97, 073121 (2010) [CrossRef] [Google Scholar]
  10. F. Huang, V.A. Tamma, Z. Mardy, J. Burdett, H.K. Wickramasinghe, Imaging nanoscale electromagnetic near-field distributions using optical forces, Sci. Rep. 5, 10610 (2015) [CrossRef] [Google Scholar]
  11. J. Jahng, J. Brocious, D.A. Fishman, F. Huang, X. Li, V.A. Tamma, H.K. Wickramasinghe, E.O. Potma, Gradient and scattering forces in photoinduced force microscopy, Phys. Rev. B. 90, 155417 (2014) [CrossRef] [Google Scholar]
  12. C. Guclu, M. Veysi, F. Capolino, Photoinduced magnetic nanoprobe excited by an azimuthally polarized vector beam, ACS Photonics 3, 2049 (2016) [CrossRef] [Google Scholar]
  13. C. Guclu, V.A. Tamma, H.K. Wickramasinghe, F. Capolino, Photoinduced magnetic force between nanostructures, Phys. Rev. B. 92, 235111 (2015) [CrossRef] [Google Scholar]
  14. M. Veysi, C. Guclu, F. Capolino, Focused azimuthally polarized vector beam and spatial magnetic resolution below the diffraction limit, J. Opt. Soc. Am. B. 33, 2265 (2016) [CrossRef] [Google Scholar]
  15. P. Wozniak, P. Banzer, G. Leuchs, Selective switching of individual multipole resonances in single dielectric nanoparticles, Laser Photon. Rev. 9, 231 (2015) [CrossRef] [Google Scholar]
  16. M. Veysi, C. Guclu, F. Capolino, Vortex beams with strong longitudinally polarized magnetic field and their generation by using metasurfaces, J. Opt. Soc. Am. B. 32, 345 (2015) [CrossRef] [Google Scholar]
  17. M. Darvishzadeh-Varcheie, C. Guclu, F. Capolino, Magnetic nanoantennas made of plasmonic nanoclusters for photoinduced magnetic field enhancement, Phys. Rev. Appl. 8, 024033 (2017) [CrossRef] [Google Scholar]
  18. C. Guclu, M. Veysi, M. Darvishzadeh-Varcheie, F. Capolino, Proceedings of conference on Lasers and Electro-Optics, Artificial Magnetism via Nanoantennas under Azimuthally Polarized Vector Beam Illumination, OSA Technical Digest, 2016 [Google Scholar]
  19. C. Guclu, M. Veysi, M. Darvishzadeh-Vercheie, F. Capolino, Optical nanoantennas as magnetic nanoprobes for enhancing light-matter interaction, Proceedings of the 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Chania, 2016, pp. 391–393 [CrossRef] [Google Scholar]
  20. G Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis, S. Linden, Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials, Opt. Lett. 30, 3198 (2005) [CrossRef] [PubMed] [Google Scholar]
  21. V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical metamaterials, Opt. Lett. 30, 3356 (2005) [CrossRef] [PubMed] [Google Scholar]
  22. A. Alu, A. Salandrino, N. Engheta, Negative effective permeability and left-handed materials at optical frequencies, Opt. Express 14, 1557 (2006) [CrossRef] [Google Scholar]
  23. A. Alu, N. Negheta, The quest for magnetic plasmons at optical frequencies, Opt. Express 17, 5723 (2009) [CrossRef] [Google Scholar]
  24. S. Campione, C. Guclu, R. Ragan, F. Capolino, Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles, ACS Photonics 1, 254 (2014) [CrossRef] [Google Scholar]
  25. C.R. Simovski, S.A. Tretyakov, Model of isotropic resonant magnetism in the visible range based on core-shell clusters, Phys. Rev. B 79, 045111 (2009) [CrossRef] [Google Scholar]
  26. D.K. Morits, C.R. Simovski, Negative effective permeability at optical frequencies produced by rings of plasmonic dimers, Phys. Rev. B 81, 205112 (2010) [CrossRef] [Google Scholar]
  27. A. Vallecchi, M. Albani, F. Capolino, Collective electric and magnetic plasmonic resonances in spherical nanoclusters, Opt. Express 19, 2754 (2011) [CrossRef] [Google Scholar]
  28. A. Vallecchi, M. Albani, F. Capolino, Effect of irregularities of nanosatellites position and size on collective electric and magnetic plasmonic resonances in spherical nanoclusters, Opt. Express 21, 7667 (2013) [CrossRef] [Google Scholar]
  29. A. Vallecchi, S. Campione, F. Capolino, Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas, J. Nanophoton. 4, 041577 (2010) [CrossRef] [Google Scholar]
  30. Z. Qian, S.P. Hastings, C. Li, B. Edward, C.K. McGinn, N. Engheta, Z. Fakhraai, S.-J. Park, Raspberry-like metamolecules exhibiting strong magnetic resonances“, ACS Nano 9, 1263 (2015) [CrossRef] [Google Scholar]
  31. B. Luk'yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater. 9, 707 (2010) [CrossRef] [PubMed] [Google Scholar]
  32. S.N. Sheikholeslami, A. García-Etxarri, J.A. Dionne, Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances, Nano Lett. 11, 3927 (2011) [CrossRef] [Google Scholar]
  33. V. Ponsinet, P. Barois, S.M. Gali, P. Richetti, J.B. Salmon, A. Vallecchi, M. Albani, A. Le Beulze, S. Gomez-Grana, E. Duguet, S. Mornet, M. Treguer-Delapierre, Resonant isotropic optical magnetism of plasmonic nanoclusters in visible light, Phys. Rev. B 92, 220414 (2015) [CrossRef] [Google Scholar]
  34. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Magnetic metamaterials at telecommunication and visible frequencies, Phys. Rev. Lett. 95, 203901 (2005) [CrossRef] [PubMed] [Google Scholar]
  35. T.D. Corrigan, P.W. Kolb, A.B. Sushkov, H.D. Drew, D.C. Schmadel, R.J. Phaneuf, Optical plasmonic resonances in split-ring resonator structures: an improved LC model, Opt. Express 16, 19850 (2008) [CrossRef] [Google Scholar]
  36. S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range, ACS Nano 5, 6586 (2011) [CrossRef] [Google Scholar]
  37. F. Shafiei, F. Monticone, K.Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, X. Li, A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance, Nat. Nanotechnol. 8, 95 (2013) [CrossRef] [Google Scholar]
  38. R.S. Savelev, S.V. Makarov, A.E. Krasnok, P.A. Belov, From optical magnetic resonance to dielectric nanophotonics (A review), Opt. Spectrosc. 119, 551 (2015) [CrossRef] [Google Scholar]
  39. A.I. Kuznetsov, A. Miroshnichenko, H.Y. Fu, J. Zhang, B. Luk'yanchuk, Magnetic light, Sci. Rep. 2, 492 (2012) [CrossRef] [Google Scholar]
  40. D. Permyakov, I. Sinev, D. Markovich, P. Ginzburg, A. Samusev, P. Belov, V. Valuckas, A.I. Kuznetsov, B.S. Luk'yanchuk, A.E. Miroshnichenko, D.N. Neshev, Y. Kivshar, Probing magnetic and electric optical responses of silicon nanoparticles, Appl. Phys. Lett. 106, 171110 (2015) [CrossRef] [Google Scholar]
  41. I. Staude, A.E. Miroshnichenko, M. Decker, N.T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T.S. Luk, D.N. Neshev, I. Brener, Y. Kivshar, Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks, ACS Nano 7, 7824 (2013) [CrossRef] [Google Scholar]
  42. A.E. Krasnok, A.E. Miroshnichenko, P.A. Belov, Y.S. Kivshar, All-dielectric optical nanoantennas, Opt. Express 20, 20599 (2012) [Google Scholar]
  43. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk'yanchuk, Optically resonant dielectric nanostructures, Science 354, 2472 (2016) [CrossRef] [Google Scholar]
  44. S. Campione, S. Lannebere, A. Aradian, M. Albani, F. Capolino, Complex modes and artificial magnetism in three-dimensional periodic arrays of titanium dioxide microspheres at millimeter waves, J. Opt. Soc. Am. B 29, 1697 (2012) [CrossRef] [Google Scholar]
  45. R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, C. Rockstuhl, Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications, Phys. Rev. B 91, 115119 (2015) [CrossRef] [Google Scholar]
  46. R. Alaee, M. Albooyeh, A. Rahimzadegan, M.S. Mirmoosa, Y.S. Kivshar, C. Rockstuhl, All-dielectric reciprocal bianisotropic nanoparticles, Phys. Rev. B 92, 245130 (2015) [CrossRef] [Google Scholar]
  47. R. Alaee, M. Albooyeh, S. Tretyakov, C. Rockstuhl, Phase-change material-based nanoantennas with tunable radiation patterns, Opt. Lett. 41, 4099 (2016) [CrossRef] [Google Scholar]
  48. M. Kamandi, M. Albooyeh, C. Guclu, M. Veysi, J. Zeng, H.K. Wickramasinghe, F. Capolino, Enantio-specific detection of chiral nano-samples using photo-induced force, Phys. Rev. Appl. 8, 064010 (2017) [CrossRef] [Google Scholar]
  49. A.O. Govorov, Z. Fan, P. Hernandez, J.M. Slocik, R.R. Naik, Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects, Nano Lett. 10, 1374 (2010) [CrossRef] [Google Scholar]
  50. A.O. Govorov, Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries, J. Phys. Chem. C 115, 7914 (2011) [CrossRef] [Google Scholar]
  51. J.M. Slocik, A.O. Govorov, R.R. Naik, Plasmonic circular dichroism of peptide-functionalized gold nanoparticles, Nano Lett. 11, 701 (2011) [CrossRef] [Google Scholar]
  52. F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A.O. Govorov, O. Gang, Discrete nanocubes as plasmonic reporters of molecular chirality, Nano Lett. 13, 3145 (2013) [CrossRef] [Google Scholar]
  53. Y. Zhao, A.A.E. Saleh, J.A. Dionne, Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers, ACS Photonics 3, 304 (2016) [CrossRef] [Google Scholar]
  54. N.J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nat. Photonics 1, 2876 (2006) [Google Scholar]
  55. R. Tullius, A.S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L.D. Barron, V.M. Rotello, G. Cooke, A. Lapthorn, M. Kadodwala, Superchiral spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures, J. Am. Chem. Soc. 137, 8380 (2015) [CrossRef] [Google Scholar]
  56. Y. Zhao, A.N. Askarpour, L. Sun, J. Shi, X. Li, A. Alù, Chirality detection of enantiomers using twisted optical metamaterials, Nat. Commun. 8, 14180 (2017) [CrossRef] [Google Scholar]
  57. S.M. Kelly, T.J. Jess, N.C. Price, How to study proteins by circular dichroism, Biochim. Biophys. Acta 1751, 119 (2005) [CrossRef] [Google Scholar]
  58. Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100‐Å scale, J. Appl. Phys. 61, 4723 (1987) [CrossRef] [Google Scholar]
  59. R. Hussain, S.S. Kruk, C.E. Bonner, M.A. Noginov, I. Staude, Y.S. Kivshar, N. Nogionva, D.N. Neshev, Enhancing Eu 3 + magnetic dipole emission by resonant plasmonic nanostructures, Opt. Lett. 40, 1659 (2015) [CrossRef] [Google Scholar]
  60. W.T. Carnall, P.R. Fields, B.G. Wybourne, Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+, J. Chem. Phys. 42, 3797 (1965) [Google Scholar]
  61. W.T. Carnall, P.R. Fields, K. Rajnak, Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+, J. Chem. Phys. 49, 4412 (1968) [CrossRef] [Google Scholar]
  62. C.M. Dodson, R. Zia, Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths, Phys. Rev. B 86, 125102 (2012) [CrossRef] [Google Scholar]
  63. H. Kurzen, L. Bovigny, C. Bulloni, C. Daul, Electronic structure and magnetic properties of lanthanide 3+ cations, Chem. Phys. Lett. 574, 129 (2013) [CrossRef] [Google Scholar]
  64. D. Li, M. Jiang, S. Cueff, C.M. Dodson, S. Karaveli, R. Zia, Quantifying and controlling the magnetic dipole contribution to 1.5 µm light emission in erbium-doped yttrium oxide, Phys. Rev. B 89, 161409 (2014) [CrossRef] [Google Scholar]
  65. K. Binnemans, Interpretation of europium (III) spectra, Coordin. Chem. Rev. 295, 1 (2015) [CrossRef] [Google Scholar]
  66. C.T. Schmiegelow, F. Schmidt-Kaler, Light with orbital angular momentum interacting with trapped ions, Eur. Phys. J. D 66, 157 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  67. N. Litchinitser, Structured light meets structured matter, Science 337, 1054 (2012) [CrossRef] [Google Scholar]
  68. F. Huang, V.A. Tamma, M. Rajaei, M. Almajhadi, H.K. Wickramasinghe, Measurement of laterally induced optical forces at the nanoscale, Appl. Phys. Lett. 110, 063103 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.