Issue
EPJ Appl. Metamat.
Volume 4, 2017
Artificial materials for advanced applications in electromagnetics and mechanics
Article Number 5
Number of page(s) 6
DOI https://doi.org/10.1051/epjam/2017002
Published online 15 February 2017
  1. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials 9 (2010) 205–213. [Google Scholar]
  2. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials 4 (2005) 864–868. [Google Scholar]
  3. A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljacic, Wireless power transfer via strongly coupled magnetic resonances, Science 317 (2007) 83–86. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. A.P. Sample, D.A. Meyer, J.R. Smith Analysis, Experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer, IEEE Transactions on Antennas and Propagation 58 (2011) 544–554. [Google Scholar]
  5. N.M. Estakhri, A. Alu, Manipulating optical reflections using engineered nanoscale metasurfaces, Physical Review B 89 (2014) 235419. [Google Scholar]
  6. Y. Radi, V.S. Asadchy, S.A. Tretyakov, Tailoring reflections from thin composite metamirrors, IEEE Transactions on Antennas and Propagation 62 (2014) 3749–3760. [CrossRef] [Google Scholar]
  7. Y. Radi, C.R. Simovski, S.A. Tretyakov, Thin perfect absorbers for electromagnetic waves: theory, design, and realizations, Physical Review Applied 3 (2015) 037001. [CrossRef] [Google Scholar]
  8. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber, Physical Review Letters 100 (2008) 207402. [Google Scholar]
  9. L.L. Spada, L. Vegni, Metamaterial-based wideband electromagnetic wave absorber, Optics Express 6 (2016) 5763–5772. [CrossRef] [Google Scholar]
  10. Y.R. Padooru, A.B. Yakovlev, C.S.R. Kaipa, G.W. Hanson, F. Medina, F. Mesa, A.W. Glisson, New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: applications to wideband absorbers, IEEE Transactions on Antennas and Propagation 60 (2012) 5727–5742. [CrossRef] [Google Scholar]
  11. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331 (2011) 746–750. [CrossRef] [PubMed] [Google Scholar]
  12. C.A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S.A. Tretyakov, C.R. Simovski, Perfect magnetic mirror and simple perfect absorber in the visible spectrum, Physical Review B 91 (2015) 115305. [CrossRef] [Google Scholar]
  13. B. Wu, H.M. Tuncer, M. Naeem, B. Yang, M.T. Cole, W.I. Milne, Y. Hao, Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz, Scientific Reports 6 (2016) 29363. [Google Scholar]
  14. C.A. Valagiannopoulos, S.A. Tretyakov, Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics, IEEE Transactions on Antennas and Propagation 62 (2014) 5089–5098. [CrossRef] [Google Scholar]
  15. Y.I. Bobrovnitskii, Impedance theory of sound absorption: the best absorber and the black body, Acoustical Physics 52 (2006) 638–647. [CrossRef] [Google Scholar]
  16. E.E. Narimanov, A.V. Kildishev, Optical black hole: Broadband omnidirectional light absorber, Applied Physics Letters 95 (2009) 041106. [Google Scholar]
  17. S.I. Maslovski, C.R. Simovski, S.A. Tretyakov, Overcoming black body radiation limit in free space: metamaterial superemitter, New Journal of Physics 18 (2016) 013034. [CrossRef] [Google Scholar]
  18. C.A. Valagiannopoulos, J. Vehmas, C.R. Simovski, S.A. Tretyakov, S.I. Maslovski, Electromagnetic energy sink, Physical Review B 92 (2015) 245402. [CrossRef] [Google Scholar]
  19. S.D. Gedney, An anisotropic perfectly matched layer – absorbing medium for the truncation of FDTD lattices, IEEE Transactions Antennas and Propagation 44 (1996) 1630–1639. [CrossRef] [Google Scholar]
  20. C.A. Valagiannopoulos, M.S. Mirmoosa, I.S. Nefedov, S.A. Tretyakov, C.R. Simovski, Hyperbolic-metamaterial antennas for broadband enhancement of dipole emission to free space, Journal of Applied Physics 116 (2014) 163106. [CrossRef] [Google Scholar]
  21. C.A. Valagiannopoulos, How non-reciprocal is an effective permittivity matrix?, Microwave and Optical Technology Letters 56 (2014) 9. [CrossRef] [Google Scholar]
  22. C.A. Valagiannopoulos, On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder, Progress in Electromagnetics Research C 3 (2008) 203–214. [CrossRef] [Google Scholar]
  23. C.A. Valagiannopoulos, S.A. Tretyakov, Theoretical concepts of unlimited-power reflectors, absorbers, and emitters with conjugately matched layers, Physical Review B 94 (2016) 125117. [CrossRef] [Google Scholar]
  24. C.A. Valagiannopoulos, Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders, Progress in Electromagnetics Research 114 (2011) 55–66. [CrossRef] [Google Scholar]
  25. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons, Reports on Progress in Physics 70 (2007) 1–87. [CrossRef] [Google Scholar]
  26. J. Polo, T. Mackay, A. Lakhtakia, Electromagnetic surface waves: a modern perspective, Elsevier, New York, 2013. [Google Scholar]
  27. R. Yang, Y. Hao, An accurate control of the surface wave using transformation optics, Optics Express 20 (2012) 9341. [CrossRef] [Google Scholar]
  28. S. Xua, H. Xu, H. Gao, Y. Jianga, F. Yuf, J.D. Joannopoulos, M. Soljacic, H. Chena, H. Sunc, B. Zhang, Broadband surface-wave transformation cloak, Proceedings of the National Academy of Sciences of the United States of America 112 (2015) 7635–7638. [Google Scholar]
  29. L. La Spada, T.M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, Y. Hao, Surface wave cloak from graded refractive index nanocomposites, Scientific Reports 6 (2016) 29363. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.