EPJ Applied Metamaterials
Volume 3, 2016
Artificial materials for advanced applications in electromagnetics and mechanics
Article Number 11
Number of page(s) 8
Published online 28 November 2016
  1. H.A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66 (1944) 163. [CrossRef] [MathSciNet]
  2. A.Yu. Nikitin, D. Zueco, F.J. García-Vidal, L. Martín-Moreno, Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness, Phys. Rev. B 78 (2008) 165429. [CrossRef]
  3. T.W. Ebbesen, H.L. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through subwavelength hole arrays, Nature 391 (1998) 667–669. [CrossRef]
  4. C. Genet, T.W. Ebbesen, Light in tiny holes, Nature 445 (2007) 39–46. [NASA ADS] [CrossRef] [PubMed]
  5. F.J. García de Abajo, Colloquium: light scattering by particle and hole arrays, Rev. Mod. Phys. 79 (2007) 1267. [CrossRef]
  6. R. Gordon, A.G. Brolo, D. Sinton, K.L. Kavanagh, Resonant optical transmission through hole-arrays in metal films: physics and applications, Laser Photon. Rev. 4 (2009) 311–335. [CrossRef]
  7. F.J. Garcia-Vidal, L. Martin-Moreno, T.W. Ebbesen, L. Kuipers, Light passing through subwavelength apertures, Rev. Mod. Phys. 82 (2010) 729–787. [CrossRef]
  8. A. Krishnan, T. Thio, T.J. Kim, H.L. Lezec, T.W. Ebbesen, P.A. Wolff, J.B. Pendry, L. Martín-Moreno, F.J. García-Vidal, Evanescently coupled resonance in surface plasmon enhanced transmission, Opt. Commun. 200 (2001) 1–7. [CrossRef]
  9. S. Carretero-Palacios, F.J. García-Vidal, L. Martín-Moreno, S.G. Rodrigo, Effect of film thickness and dielectric environment on optical transmission through subwavelength holes, Phys. Rev. B 85 (2012) 035417. [CrossRef]
  10. S.G. Rodrigo, F. de León-Pérez, L. Martín-Moreno, Extraordinary optical transmission: fundamentals and applications, Proc. IEEE (2016). DOI: 10.1109/JPROC.2016.2580664.
  11. S.G. Rodrigo, F.J. García-Vidal, L. Martín-Moreno, Theory of absorption-induced transparency, Phys. Rev. B 88 (2013) 155126. [CrossRef]
  12. H.-R. Park, K.J. Ahn, S. Han, Y.-M. Bahk, N. Park, D.-S. Kim, Colossal absorption of molecules inside single terahertz nanoantennas, Nano Lett. 13 (2013) 1782–1786. [CrossRef]
  13. J.F. O’Hara, W. Withayachumnankul, I. Al-Naib, A review on thin-film sensing with terahertz waves, J. Infrared. Millim. TE 33 (2012) 245–291. [CrossRef]
  14. J.A. Hutchison, D.M. O’Carroll, T. Schwartz, C. Genet, T.W. Ebbesen, Absorption-induced transparency, Angew. Chem. Int. Ed. 50 (2011) 2085–2089. [CrossRef]
  15. W.-H. Yeh, J.W. Petefish, A.C. Hillier, Resonance quenching and guided modes arising from the coupling of surface plasmons with a molecular resonance, Anal. Chem. 84 (2012) 1139–1145. [CrossRef]
  16. X. Zhong, S.G. Rodrigo, L. Zhang, P. Samori, C. Genet, L. Martin-Moreno, J.A. Hutchison, T.W. Ebbesen, Waveguide and plasmonic absorption-induced transparency, ACS Nano 10 (2016) 4570–4578. [CrossRef]
  17. E.J. Osley, C.G. Biris, P.G. Thompson, R.R.F. Jahromi, P.A. Warburton, N.C. Panoiu, Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule, Phys. Rev. Lett. 110 (2013) 087402. [CrossRef]
  18. M.F. Acosta, S.G. Rodrigo, L. Martín-Moreno, C. Pecharromán, R.I. Merino, Micropillar templates for dielectric filled metal arrays and flexible metamaterials, Adv. Opt. Mater. (2016). DOI: 10.1002/adom.201600670.
  19. R.I. Merino, M.F. Acosta, V.M. Orera, New polaritonic materials in the THz range made of directionally solidified halide eutectics, J. Eur. Ceram. Soc. 34 (2014) 2061–2069. [CrossRef]
  20. S.G. Rodrigo, L. Martín-Moreno, Absorption-induced transparency metamaterials in the terahertz regime, Opt. Lett. 41 (2016) 293–296. [CrossRef]
  21. J.B. Pendry, L. Martín-Moreno, F.J. García-Vidal, Mimicking surface plasmons with structured surfaces, Science 305 (2004) 847–848. [CrossRef] [PubMed]
  22. L. Martín-Moreno, F.J. García-Vidal, Minimal model for optical transmission through holey metal films, J. Phys.: Condens. Matter 20 (2008) 304214. [CrossRef]
  23. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, G. Mouret, Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy, Opt. Lett. 31 (2006) 2356–2358. [CrossRef]
  24. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, H. Nouali, Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods, Appl. Phys. B 86 (2007) 579–586. [CrossRef]
  25. J.A. Hejase, P.R. Paladhi, P. Chahal, Terahertz characterization of dielectric substrates for component design and nondestructive evaluation of packages, IEEE Trans. Compon. Packag. Manuf. Technol. 1 (2011) 1685–1694. [CrossRef]
  26. X. Chen, H.-R. Park, M. Pelton, X. Piao, N.C. Lindquist, H. Im, Y.J. Kim, J.S. Ahn, K.J. Ahn, N. Park, D.-S. Kim, S.-H. Oh, Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves, Nature Commun. 4 (2013) 2361.
  27. H.-R. Park, S. Namgung, X. Chen, S.-H. Oh, High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films, Faraday Discuss. 178 (2015) 195–201. [CrossRef]
  28. A. Taove, S.C. Hagness, Computational electrodynamics: the finite-difference timedomain method. 3rd ed., Artech House, Boston, 2005.
  29. S.G. Rodrigo, F.J. García-Vidal, L. Martín-Moreno, Influence of material properties on extraordinary optical transmission through hole arrays, Phys. Rev. B 77 (2008) 075401. [CrossRef]
  30. S.G. Rodrigo, Optical properties of nanostructured metallic systems: studied with the finite-difference time-domain method, Springer Theses, Springer, 2011.
  31. R.J. Luebbers, F. Hunsberger, FDTD for Nth-order dispersive media, IEEE Trans. Antennas Propag. 40 (1992) 1297. [CrossRef]
  32. F. Hao, P. Nordlander, Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles, Chem. Phys. Lett. 446 (2007) 115–118. [CrossRef]
  33. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.-T. Chen, A.J. Taylor, J. Han, W. Zhang, Active control of electromagnetically induced transparency analogue in terahertz metamaterials, Nature Commun. 3 (2012) 1151. [CrossRef] [PubMed]
  34. T. Kampfrath, K. Tanaka, K.A. Nelson, Resonant and nonresonant control over matter and light by intense terahertz transients, Nature Photon. 7 (2013) 680–690. [CrossRef]
  35. A. Roberts, R.C. McPhedran, Bandpass grids with annular apertures, IEEE Trans. Antennas Propag. 36 (1988) 607–611. [CrossRef]
  36. F. de Leon-Perez, G. Brucoli, F.J. Garcia-Vidal, L. Martin-Moreno, Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film, New J. Phys. 10 (2008) 105017. [CrossRef]
  37. J. Bravo-Abad, F.J. García-Vidal, L. Martín-Moreno, Resonant transmission of light through finite chains of subwavelength holes in a metallic film, Phys. Rev. Lett. 93 (2004) 227401. [CrossRef]
  38. F.J. García-Vidal, E. Moreno, J.A. Porto, L. Martín-Moreno, Transmission of light through a single rectangular hole, Phys. Rev. Lett. 95 (2005) 103901. [CrossRef]
  39. F. Lopez-Tejeira, S.G. Rodrigo, L. Martin-Moreno, F.J. Garcia-Vidal, E. Devaux, J. Dintinger, T.W. Ebbesen, J.R. Krenn, I.P. Radko, S.I. Bozhevolnyi, M.U. Gonzalez, J.C. Weeber, A. Dereux, Modulation of surface plasmon coupling-in by one-dimensional surface corrugation, New J. Phys. 10 (2008) 033035. [CrossRef]
  40. A.I. Fernández-Domínguez, I. Hernández-Carrasco, L. Martín-Moreno, F.J. García-Vidal, Transmission resonances through a Fibonacci array of subwavelength slits, Electromagnetics 28 (2008) 186–197. [CrossRef]
  41. C.R. Williams, M. Misra, S.R. Andrews, S.A. Maier, S. Carretero-Palacios, S.G. Rodrigo, F.J. García-Vidal, L. Martín-Moreno, Dual band terahertz waveguiding on a planar metal surface patterned with annular holes, Appl. Phys. Lett. 96 (2010) 011101. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.