EPJ Applied Metamaterials
Volume 3, 2016
Artificial materials for advanced applications in electromagnetics and mechanics
Article Number 11
Number of page(s) 8
Published online 28 November 2016
  1. H.A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66 (1944) 163. [CrossRef] [MathSciNet] [Google Scholar]
  2. A.Yu. Nikitin, D. Zueco, F.J. García-Vidal, L. Martín-Moreno, Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness, Phys. Rev. B 78 (2008) 165429. [CrossRef] [Google Scholar]
  3. T.W. Ebbesen, H.L. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through subwavelength hole arrays, Nature 391 (1998) 667–669. [CrossRef] [Google Scholar]
  4. C. Genet, T.W. Ebbesen, Light in tiny holes, Nature 445 (2007) 39–46. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  5. F.J. García de Abajo, Colloquium: light scattering by particle and hole arrays, Rev. Mod. Phys. 79 (2007) 1267. [CrossRef] [Google Scholar]
  6. R. Gordon, A.G. Brolo, D. Sinton, K.L. Kavanagh, Resonant optical transmission through hole-arrays in metal films: physics and applications, Laser Photon. Rev. 4 (2009) 311–335. [CrossRef] [Google Scholar]
  7. F.J. Garcia-Vidal, L. Martin-Moreno, T.W. Ebbesen, L. Kuipers, Light passing through subwavelength apertures, Rev. Mod. Phys. 82 (2010) 729–787. [CrossRef] [Google Scholar]
  8. A. Krishnan, T. Thio, T.J. Kim, H.L. Lezec, T.W. Ebbesen, P.A. Wolff, J.B. Pendry, L. Martín-Moreno, F.J. García-Vidal, Evanescently coupled resonance in surface plasmon enhanced transmission, Opt. Commun. 200 (2001) 1–7. [CrossRef] [Google Scholar]
  9. S. Carretero-Palacios, F.J. García-Vidal, L. Martín-Moreno, S.G. Rodrigo, Effect of film thickness and dielectric environment on optical transmission through subwavelength holes, Phys. Rev. B 85 (2012) 035417. [CrossRef] [Google Scholar]
  10. S.G. Rodrigo, F. de León-Pérez, L. Martín-Moreno, Extraordinary optical transmission: fundamentals and applications, Proc. IEEE (2016). DOI: 10.1109/JPROC.2016.2580664. [Google Scholar]
  11. S.G. Rodrigo, F.J. García-Vidal, L. Martín-Moreno, Theory of absorption-induced transparency, Phys. Rev. B 88 (2013) 155126. [CrossRef] [Google Scholar]
  12. H.-R. Park, K.J. Ahn, S. Han, Y.-M. Bahk, N. Park, D.-S. Kim, Colossal absorption of molecules inside single terahertz nanoantennas, Nano Lett. 13 (2013) 1782–1786. [CrossRef] [Google Scholar]
  13. J.F. O’Hara, W. Withayachumnankul, I. Al-Naib, A review on thin-film sensing with terahertz waves, J. Infrared. Millim. TE 33 (2012) 245–291. [CrossRef] [Google Scholar]
  14. J.A. Hutchison, D.M. O’Carroll, T. Schwartz, C. Genet, T.W. Ebbesen, Absorption-induced transparency, Angew. Chem. Int. Ed. 50 (2011) 2085–2089. [CrossRef] [Google Scholar]
  15. W.-H. Yeh, J.W. Petefish, A.C. Hillier, Resonance quenching and guided modes arising from the coupling of surface plasmons with a molecular resonance, Anal. Chem. 84 (2012) 1139–1145. [CrossRef] [Google Scholar]
  16. X. Zhong, S.G. Rodrigo, L. Zhang, P. Samori, C. Genet, L. Martin-Moreno, J.A. Hutchison, T.W. Ebbesen, Waveguide and plasmonic absorption-induced transparency, ACS Nano 10 (2016) 4570–4578. [CrossRef] [Google Scholar]
  17. E.J. Osley, C.G. Biris, P.G. Thompson, R.R.F. Jahromi, P.A. Warburton, N.C. Panoiu, Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule, Phys. Rev. Lett. 110 (2013) 087402. [CrossRef] [Google Scholar]
  18. M.F. Acosta, S.G. Rodrigo, L. Martín-Moreno, C. Pecharromán, R.I. Merino, Micropillar templates for dielectric filled metal arrays and flexible metamaterials, Adv. Opt. Mater. (2016). DOI: 10.1002/adom.201600670. [Google Scholar]
  19. R.I. Merino, M.F. Acosta, V.M. Orera, New polaritonic materials in the THz range made of directionally solidified halide eutectics, J. Eur. Ceram. Soc. 34 (2014) 2061–2069. [CrossRef] [Google Scholar]
  20. S.G. Rodrigo, L. Martín-Moreno, Absorption-induced transparency metamaterials in the terahertz regime, Opt. Lett. 41 (2016) 293–296. [CrossRef] [Google Scholar]
  21. J.B. Pendry, L. Martín-Moreno, F.J. García-Vidal, Mimicking surface plasmons with structured surfaces, Science 305 (2004) 847–848. [CrossRef] [PubMed] [Google Scholar]
  22. L. Martín-Moreno, F.J. García-Vidal, Minimal model for optical transmission through holey metal films, J. Phys.: Condens. Matter 20 (2008) 304214. [CrossRef] [Google Scholar]
  23. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, G. Mouret, Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy, Opt. Lett. 31 (2006) 2356–2358. [CrossRef] [Google Scholar]
  24. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, H. Nouali, Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods, Appl. Phys. B 86 (2007) 579–586. [CrossRef] [Google Scholar]
  25. J.A. Hejase, P.R. Paladhi, P. Chahal, Terahertz characterization of dielectric substrates for component design and nondestructive evaluation of packages, IEEE Trans. Compon. Packag. Manuf. Technol. 1 (2011) 1685–1694. [CrossRef] [Google Scholar]
  26. X. Chen, H.-R. Park, M. Pelton, X. Piao, N.C. Lindquist, H. Im, Y.J. Kim, J.S. Ahn, K.J. Ahn, N. Park, D.-S. Kim, S.-H. Oh, Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves, Nature Commun. 4 (2013) 2361. [Google Scholar]
  27. H.-R. Park, S. Namgung, X. Chen, S.-H. Oh, High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films, Faraday Discuss. 178 (2015) 195–201. [CrossRef] [Google Scholar]
  28. A. Taove, S.C. Hagness, Computational electrodynamics: the finite-difference timedomain method. 3rd ed., Artech House, Boston, 2005. [Google Scholar]
  29. S.G. Rodrigo, F.J. García-Vidal, L. Martín-Moreno, Influence of material properties on extraordinary optical transmission through hole arrays, Phys. Rev. B 77 (2008) 075401. [CrossRef] [Google Scholar]
  30. S.G. Rodrigo, Optical properties of nanostructured metallic systems: studied with the finite-difference time-domain method, Springer Theses, Springer, 2011. [Google Scholar]
  31. R.J. Luebbers, F. Hunsberger, FDTD for Nth-order dispersive media, IEEE Trans. Antennas Propag. 40 (1992) 1297. [Google Scholar]
  32. F. Hao, P. Nordlander, Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles, Chem. Phys. Lett. 446 (2007) 115–118. [CrossRef] [Google Scholar]
  33. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.-T. Chen, A.J. Taylor, J. Han, W. Zhang, Active control of electromagnetically induced transparency analogue in terahertz metamaterials, Nature Commun. 3 (2012) 1151. [CrossRef] [PubMed] [Google Scholar]
  34. T. Kampfrath, K. Tanaka, K.A. Nelson, Resonant and nonresonant control over matter and light by intense terahertz transients, Nature Photon. 7 (2013) 680–690. [CrossRef] [Google Scholar]
  35. A. Roberts, R.C. McPhedran, Bandpass grids with annular apertures, IEEE Trans. Antennas Propag. 36 (1988) 607–611. [CrossRef] [Google Scholar]
  36. F. de Leon-Perez, G. Brucoli, F.J. Garcia-Vidal, L. Martin-Moreno, Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film, New J. Phys. 10 (2008) 105017. [CrossRef] [Google Scholar]
  37. J. Bravo-Abad, F.J. García-Vidal, L. Martín-Moreno, Resonant transmission of light through finite chains of subwavelength holes in a metallic film, Phys. Rev. Lett. 93 (2004) 227401. [CrossRef] [Google Scholar]
  38. F.J. García-Vidal, E. Moreno, J.A. Porto, L. Martín-Moreno, Transmission of light through a single rectangular hole, Phys. Rev. Lett. 95 (2005) 103901. [CrossRef] [Google Scholar]
  39. F. Lopez-Tejeira, S.G. Rodrigo, L. Martin-Moreno, F.J. Garcia-Vidal, E. Devaux, J. Dintinger, T.W. Ebbesen, J.R. Krenn, I.P. Radko, S.I. Bozhevolnyi, M.U. Gonzalez, J.C. Weeber, A. Dereux, Modulation of surface plasmon coupling-in by one-dimensional surface corrugation, New J. Phys. 10 (2008) 033035. [CrossRef] [Google Scholar]
  40. A.I. Fernández-Domínguez, I. Hernández-Carrasco, L. Martín-Moreno, F.J. García-Vidal, Transmission resonances through a Fibonacci array of subwavelength slits, Electromagnetics 28 (2008) 186–197. [CrossRef] [Google Scholar]
  41. C.R. Williams, M. Misra, S.R. Andrews, S.A. Maier, S. Carretero-Palacios, S.G. Rodrigo, F.J. García-Vidal, L. Martín-Moreno, Dual band terahertz waveguiding on a planar metal surface patterned with annular holes, Appl. Phys. Lett. 96 (2010) 011101. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.