Issue
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
Article Number 4
Number of page(s) 15
DOI https://doi.org/10.1051/epjam/2015006
Published online 15 December 2015
  1. R.W.P. King, C.W. Harrison, Antennas and waves: a modern approach, MIT Press, Cambridge, Massachusetts, 1969. [Google Scholar]
  2. C.A. Balanis, Antenna theory, Wiley, New York, 1996. [Google Scholar]
  3. Pozar D.M., Schaubert D.H., Microstrip antennas: the analysis and design of microstrip antennas and arrays, IEEE Press, New York, 1995. [Google Scholar]
  4. K.L. Wong, Planar antennas for wireless communications, Wiley-Interscience, New York, 2003 [Google Scholar]
  5. S.A. Schelkunoff, H.T. Friis, Antennas: theory and practice, Wiley, New York, 1952. [Google Scholar]
  6. S.K. Patel, Y. Kosta, Triband microstrip based radiating structure design using split ring resonator and complementary split ring resonator, Microwave and Optical Technology Letters 55 (2013) 2219–2222. [CrossRef] [Google Scholar]
  7. S.K. Patel, Y. Kosta, Investigation on radiation improvement of corner truncated triband square microstrip patch antenna with double negative material, Journal of Electromagnetic Waves and Applications 27 (2013) 819–833. [CrossRef] [Google Scholar]
  8. S.K. Patel, Y. Kosta, Dualband parasitic metamaterial square microstrip patch antenna design, International Journal of Ultra Wideband Communications and Systems 2 (2012) 225–232. [CrossRef] [Google Scholar]
  9. R.W. Ziolkowski, A.D. Kipple, Application of double negative materials to increase the power radiated by electrically small antennas, IEEE Transactions on Antennas and Propagation 51 (2003) 2626–2640. [CrossRef] [Google Scholar]
  10. K. Fujimoto, Small antennas, John Wiley & Sons, Inc, New York, 1987. [Google Scholar]
  11. A. Alu, F. Bilotti, N. Engheta, L. Vegni, Subwavelength, compact, resonant patch antennas loaded with metamaterials, IEEE Transactions on Antennas and Propagation 55 (2007) 13–25. [CrossRef] [Google Scholar]
  12. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (2003) 824. [CrossRef] [PubMed] [Google Scholar]
  13. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions, Science 311 (2006) 189. [CrossRef] [PubMed] [Google Scholar]
  14. A. Sundaramurthy, K.B. Crozier, G.S. Kino, Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles, Physical Review B 72 (2005) 165409. [CrossRef] [Google Scholar]
  15. L. Novotny, Effective wavelength scaling for optical antennas, Physical Review Letters 98 (2007) 266802. [CrossRef] [PubMed] [Google Scholar]
  16. G.W. Bryant, F.J. García de Abajo, J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas, Nano Letters 8 (2008) 601. [CrossRef] [Google Scholar]
  17. A. Alù, N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Physical Review Letters 101 (2008) 043901. [CrossRef] [Google Scholar]
  18. J.-J. Greffet, M. Laroche, F. Marquier, Impedance of a nanoantenna and a single quantum emitter, Physical Review Letters 105 (2010) 117701. [CrossRef] [PubMed] [Google Scholar]
  19. M. Brongersma, Engineering optical nanoantennas, Nature Photonics 2 (2008) 270. [CrossRef] [Google Scholar]
  20. T. Zentgraf, T.P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, F. Lederer, Babinet’s principle for optical frequency metamaterials and nanoantennas, Physical Review B 76 (2007) 033407. [CrossRef] [Google Scholar]
  21. J.-S. Huang, T. Feichtner, P. Biagioni, B. Hecht, Impedance matching and emission properties of nanoantennas in an optical nanocircuit, Nano Letters 9 (2009) 1897. [CrossRef] [Google Scholar]
  22. J. Li, A. Salandrino, N. Engheta, Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain, Physical Review B 76 (2007) 245403. [CrossRef] [Google Scholar]
  23. H. Wong, K.-M. Mak, K.-M. Luk, Directional wideband shorted bowtie antenna, Microwave and Optical Technology Letters 48 (2006) 1670–1672. [CrossRef] [Google Scholar]
  24. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nature Photonics 3 (2009) 654–657. [CrossRef] [Google Scholar]
  25. A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, N.F. van Hulst, Unidirectional emission of a quantum dot coupled to a nanoantenna, Science 329 (2010) 930–933. [CrossRef] [PubMed] [Google Scholar]
  26. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas, Physics Review Letters 94 (2005) 017402. [CrossRef] [PubMed] [Google Scholar]
  27. T. Kosako, Y. Kadoya, H.F. Hofmann, Directional control of light by a nano-optical Yagi-Uda antenna, Nature Photonics 4 (2010) 312–315. [CrossRef] [Google Scholar]
  28. G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Ciracì, C. Fang, J. Huang, D.R. Smith, M.H. Mikkelsen, Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas, Nature Photonics 8 (2014) 835–840. [CrossRef] [Google Scholar]
  29. A. Moreau, C. Ciracì, J.J. Mock, R.T. Hill, Q. Wang, B.J. Wiley, A. Chilkoti, D.R. Smith, Controlled-reflectance surfaces with film-coupled colloidal nanoantennas, Nature 492 (2012) 86. [CrossRef] [Google Scholar]
  30. J.B. Lassiter, F. McGuire, J.J. Mock, C. Ciracì, R.T. Hill, B.J. Wiley, A. Chilkoti, D.R. Smith, Plasmonic waveguide modes of film-coupled metallic nanocubes, Nano Letters 13 (2013) 5866. [CrossRef] [Google Scholar]
  31. A. Alu, N. Engheta, Tuning the scattering response of optical nanoantennas with nanocircuit loads, Nature Photonics 2 (2008) 307–310. [CrossRef] [Google Scholar]
  32. P. Biagioni, J.S. Huang, B. Hecht, Nanoantennas for visible and infrared radiation, Reports on Progress in Physics 75 (2012) 024402. [CrossRef] [Google Scholar]
  33. L. Novotny, N. Van Hulst, Antennas for light, Nature Photonics 5 (2011) 83–90. [CrossRef] [Google Scholar]
  34. J.H. Kang, D.S. Kim, Q.-H. Park, Local capacitor model for plasmonic electric field enhancement, Physical Review Letters 102 (2009) 093906. [CrossRef] [Google Scholar]
  35. K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, Optical antennas: resonators for local field enhancement, Journal of Applied Physics 94 (2003) 4632–4642. [CrossRef] [Google Scholar]
  36. J. Aizpurua, G.W. Bryant, L.J. Richter, F.G. De Abajo, B.K. Kelley, T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Physics Review B 71 (2005) 235420. [CrossRef] [Google Scholar]
  37. E. Cubukcu, E.A. Kort, K.B. Crozier, F. Capasso, Plasmonic laser antenna, Applied Physics Letters 89 (2006) 093120. [CrossRef] [Google Scholar]
  38. E.K. Payne, K.L. Shuford, S. Park, G.C. Schatz, C.A. Mirkin, Multipole plasmon resonances in gold nanorods, Journal of Physical Chemistry B 110 (2006) 2150–2154. [CrossRef] [PubMed] [Google Scholar]
  39. P.J. Burke, S. Li, Z. Yu, Quantitative theory of nanowire and nanotube antenna performance, IEEE Transactions on Nanotechnology 5 (2006) 314–334. [CrossRef] [Google Scholar]
  40. G.W. Hanson, On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas, IEEE Transactions on Antennas and Propagation 54 (2006) 3677–3685. [CrossRef] [Google Scholar]
  41. P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas, Science 308 (2005) 1607–1609. [CrossRef] [PubMed] [Google Scholar]
  42. A. Alu, N. Engheta, Wireless at the nanoscale: optical interconnects using matched nanoantennas, Physical Review Letters 104 (2010) 213902. [CrossRef] [Google Scholar]
  43. N. Engheta, A. Salandrino, A. Alù, Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors, Physical Review Letters 95 (2005) 095504. [CrossRef] [Google Scholar]
  44. P.A. Franken, A.E. Hill, C.E. Peters, G. Weinreich, Generation of optical harmonics, Physical Review Letters 7 (1961) 118. [CrossRef] [Google Scholar]
  45. Y.-R. Shen, Principles of nonlinear optics, Wiley-Interscience, New York, USA, 1984. [Google Scholar]
  46. R.W. Boyd, Nonlinear optics, Academic Press, San Diego, CA, 2006. [Google Scholar]
  47. H. Harutyunyan, G. Volpe, L. Novotny, Nonlinear optical antennas, in: A. Alu, M. Agio (Eds.), Optical antennas, Cambridge University Press, New York, 2012, pp. 131–143. [Google Scholar]
  48. M. Kauranen, A.V. Zayats, Nonlinear plasmonics, Nature Photonics 6 (2012) 737–748. [CrossRef] [Google Scholar]
  49. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R.M. Osgood Jr., K.J. Malloy, S.R.J. Brueck, Second harmonic generation from a nanopatterned isotropic nonlinear material, Nano Letters 6 (2006) 1027–1030. [CrossRef] [Google Scholar]
  50. M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials, Science 313 (2006) 502–504. [CrossRef] [PubMed] [Google Scholar]
  51. F. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, M. Wegener, Second-harmonic generation from split-ring resonators on a gas substrate, Optics Letters 34 (2009) 1997–1999. [CrossRef] [PubMed] [Google Scholar]
  52. H. Suchowski, K. O’Brien, Z.J. Wong, A. Salandrino, X. Yin, X. Zhang, Phase mismatch-free nonlinear propagation in optical zero-index materials, Science 342 (2013) 1223–1226. [CrossRef] [Google Scholar]
  53. K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang, Predicting nonlinear properties of metamaterials from the linear response, Nature Materials 14 (2015) 379–383. [CrossRef] [Google Scholar]
  54. S. Lan, L. Kang, D.T. Schoen, S.P. Rodrigues, Y. Cui, M.L. Brongersma, W. Cai, Backward phase-matching for nonlinear optical generation in negative-index materials, Nature Materials 14 (2015) 807–811. [CrossRef] [Google Scholar]
  55. M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, F. Ciccacci, M. Finazzi, Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation, Nature Nanotechnology 10 (2015) 412. [CrossRef] [Google Scholar]
  56. N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen, Controlling light with metamaterial-based nonlinear photonic crystals, Nature Photonics 9 (2015) 180. [CrossRef] [Google Scholar]
  57. J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, M.A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband polaritons, Nature 511 (2014) 65–69. [CrossRef] [Google Scholar]
  58. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, A. Alù, Temporal soliton excitation in an ε-near-zero plasmonic metamaterial, Optics Letters 39 (2014) 5566–5569. [CrossRef] [Google Scholar]
  59. C. Argyropoulos, G. D’Aguanno, A. Alù, Giant second harmonic generation efficiency and ideal phase matching with a double e-near-zero cross-slit metamaterial, Physical Review B 89 (2014) 235401. [CrossRef] [Google Scholar]
  60. C. Argyropoulos, P.Y. Chen, A. Alù, Enhanced nonlinear effects in metamaterials and plasmonics, Advanced Electromagnetics 1 (2012) 46–51. [CrossRef] [Google Scholar]
  61. P.Y. Chen, A. Alu, Optical nanoantenna arrays loaded with nonlinear materials, Physical Review B 82 (2010) 235405. [CrossRef] [Google Scholar]
  62. C. Argyropoulos, P.Y. Chen, G. D’Aguanno, N. Engheta, A. Alu, Boosting optical nonlinearities in ε-near-zero plasmonic channels, Physical Review B 85 (2012) 045129. [CrossRef] [Google Scholar]
  63. C. Argyropoulos, P.Y. Chen, F. Monticone, G. D’Aguanno, A. Alu, Nonlinear plasmonic cloaks to realize giant all-optical scattering switching, Physical Review Letters 108 (2012) 263905. [CrossRef] [Google Scholar]
  64. P.Y. Chen, C. Argyropoulos, A. Alu, Enhanced nonlinearities using plasmonic nanoantennas, Nanophotonics 1 (2012) 221–233. [Google Scholar]
  65. K.D. Ko, A. Kumar, K.H. Fung, R. Ambekar, G.L. Liu, N.X. Fang, K.C. Toussaint Jr., Nonlinear optical response from arrays of Au bowtie nanoantennas, Nano Letters 11 (2010) 61–65. [Google Scholar]
  66. C. Argyropoulos, C. Ciracì, D.R. Smith, Enhanced optical bistability with film-coupled plasmonic nanocubes, Applied Physics Letters 104 (2014) 063108. [CrossRef] [Google Scholar]
  67. J. Butet, O.J. Martin, Manipulating the optical bistability in a nonlinear plasmonic nanoantenna array with a reflecting surface, Plasmonics 10 (2015) 203–209. [CrossRef] [Google Scholar]
  68. F. Zhou, Y. Liu, Z.-Y. Li, Y. Xia, Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials, Optics Express 18 (2010) 13337–13344. [CrossRef] [Google Scholar]
  69. E.D. Palik, Handbook of optical constants of solids, Academic Press, New York, 1985. [Google Scholar]
  70. B. Gallinet, A.M. Kern, O.J. Martin, Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach, Journal of Optical Society of America A 27 (2010) 2261–2271. [CrossRef] [Google Scholar]
  71. B. Gallinet, O.J. Martin, Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation, Photonics and Nanostructures – Fundamentals and Applications 8 (2010) 278–284. [CrossRef] [Google Scholar]
  72. A.L. Lereu, J.P. Hoogenboom, N.F. van Hulst, Gap nanoantennas toward molecular plasmonic devices, International Journal of Optics 2012 (2012) 502930. [CrossRef] [Google Scholar]
  73. C. Ciracì, A. Rose, C. Argyropoulos, D.R. Smith, Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles, Journal of Optical Society of America B 31 (2014) 2601–2607. [CrossRef] [Google Scholar]
  74. T.B. Hoang, G.M. Akselrod, C. Argyropoulos, J. Huang, D.R. Smith, M.H. Mikkelsen, Ultrafast spontaneous emission source using plasmonic nanoantennas, Nature Communications 6 (2015) 7788. [CrossRef] [Google Scholar]
  75. N. Large, M. Abb, J. Aizpurua, O.L. Muskens, Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches, Nano Letters 10 (2010) 1741–1746. [CrossRef] [Google Scholar]
  76. B.J. Roxworthy, K.D. Ko, A. Kumar, K.H. Fung, E.K.C. Chow, G.L. Liu, N.X. Fang, K.C. Toussaint Jr., Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting, Nano Letters 12 (2012) 796–801. [CrossRef] [Google Scholar]
  77. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, D.W. Pohl, Scanning near-field optical microscopy with aperture probes: fundamentals and applications, Journal of Chemical Physics 112 (2000) 7761–7774. [CrossRef] [Google Scholar]
  78. M.A. Paesler, P.J. Moyer, Near-field optics: theory, instrumentation, and applications, Wiley-Interscience, New York, 1996. [Google Scholar]
  79. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry 58 (2007) 267–297. [CrossRef] [PubMed] [Google Scholar]
  80. I. Kocakarin, K. Yegin, Glass superstrate nanoantennas for infrared energy harvesting applications, International Journal of Antennas and Propagation 2013 (2013) 245960. [CrossRef] [Google Scholar]
  81. L. Cao, P. Fan, A.P. Vasudev, J.S. White, Z. Yu, W. Cai, J.A. Schuller, S. Fan, M.L. Brongersma, Semiconductor nanowire optical antenna solar absorbers, Nano Letters 10 (2010) 439–445. [CrossRef] [Google Scholar]
  82. S. Kawata, Nano-optics, Springer Series in Optical Sciences, vol. 84, Springer, Berlin, 2002. [CrossRef] [Google Scholar]
  83. J. Alda, J.M. Rico-García, J.M. López-Alonso, G. Boreman, Optical antennas for nano-photonic applications, Nanotechnology 16 (2005) S230. [CrossRef] [Google Scholar]
  84. G.M. Akselrod, T. Ming, C. Argyropoulos, T.B. Hoang, Y. Lin, X. Ling, D.R. Smith, J. Kong, M.H. Mikkelsen, Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors, Nano Letters 15 (2015) 3578–3584. [CrossRef] [Google Scholar]
  85. T.S. van Zanten, M.J. Lopez-Bosque, M.F. Garcia-Parajo, Imaging individual proteins and nanodomains on intact cell membranes with a probe based optical antenna, Small 6 (2010) 270–275. [CrossRef] [Google Scholar]
  86. A. Ahmed, R. Gordon, Directivity enhanced Raman spectroscopy using nanoantennas, Nano Letters 11 (2011) 1800–1803. [CrossRef] [Google Scholar]
  87. P. Kühler, E.-M. Roller, R. Schreiber, T. Liedl, T. Lohmüller, J. Feldmann, Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy, Nano Letters 14 (2014) 2914. [CrossRef] [Google Scholar]
  88. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials 9 (2010) 205–213. [CrossRef] [PubMed] [Google Scholar]
  89. M.W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N.S. King, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum plasmonic nanoantennas, Nano Letters 12 (2012) 6000–6004. [CrossRef] [Google Scholar]
  90. C. Argyropoulos, F. Monticone, G. D’Aguanno, A. Alu, Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths, Applied Physics Letters 103 (2013) 143113. [CrossRef] [Google Scholar]
  91. N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, F. Capasso, Flat optics: controlling wavefronts with optical antenna metasurfaces, IEEE Journal of Selected Topics in Quantum Electronics 19 (2013) 4700423. [CrossRef] [Google Scholar]
  92. F. Monticone, A. Alu, Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials, Chinese Physics B 23 (2014) 047809. [CrossRef] [Google Scholar]
  93. N. Yu, F. Capasso, Flat optics with designer metasurfaces, Nature Materials 13 (2014) 139–150. [CrossRef] [Google Scholar]
  94. N. Meinzer, W.L. Barnes, I.R. Hooper, Plasmonic meta-atoms and metasurfaces, Nature Photonics 8 (2014) 889–898. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.