EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
Article Number 4
Number of page(s) 15
Published online 15 December 2015
  1. R.W.P. King, C.W. Harrison, Antennas and waves: a modern approach, MIT Press, Cambridge, Massachusetts, 1969.
  2. C.A. Balanis, Antenna theory, Wiley, New York, 1996.
  3. Pozar D.M., Schaubert D.H., Microstrip antennas: the analysis and design of microstrip antennas and arrays, IEEE Press, New York, 1995.
  4. K.L. Wong, Planar antennas for wireless communications, Wiley-Interscience, New York, 2003
  5. S.A. Schelkunoff, H.T. Friis, Antennas: theory and practice, Wiley, New York, 1952.
  6. S.K. Patel, Y. Kosta, Triband microstrip based radiating structure design using split ring resonator and complementary split ring resonator, Microwave and Optical Technology Letters 55 (2013) 2219–2222. [CrossRef]
  7. S.K. Patel, Y. Kosta, Investigation on radiation improvement of corner truncated triband square microstrip patch antenna with double negative material, Journal of Electromagnetic Waves and Applications 27 (2013) 819–833. [CrossRef]
  8. S.K. Patel, Y. Kosta, Dualband parasitic metamaterial square microstrip patch antenna design, International Journal of Ultra Wideband Communications and Systems 2 (2012) 225–232. [CrossRef]
  9. R.W. Ziolkowski, A.D. Kipple, Application of double negative materials to increase the power radiated by electrically small antennas, IEEE Transactions on Antennas and Propagation 51 (2003) 2626–2640. [CrossRef]
  10. K. Fujimoto, Small antennas, John Wiley & Sons, Inc, New York, 1987.
  11. A. Alu, F. Bilotti, N. Engheta, L. Vegni, Subwavelength, compact, resonant patch antennas loaded with metamaterials, IEEE Transactions on Antennas and Propagation 55 (2007) 13–25. [CrossRef]
  12. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (2003) 824. [CrossRef] [PubMed]
  13. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions, Science 311 (2006) 189. [CrossRef] [PubMed]
  14. A. Sundaramurthy, K.B. Crozier, G.S. Kino, Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip Au nanotriangles, Physical Review B 72 (2005) 165409. [CrossRef]
  15. L. Novotny, Effective wavelength scaling for optical antennas, Physical Review Letters 98 (2007) 266802. [CrossRef] [PubMed]
  16. G.W. Bryant, F.J. García de Abajo, J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas, Nano Letters 8 (2008) 601. [CrossRef]
  17. A. Alù, N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Physical Review Letters 101 (2008) 043901. [CrossRef]
  18. J.-J. Greffet, M. Laroche, F. Marquier, Impedance of a nanoantenna and a single quantum emitter, Physical Review Letters 105 (2010) 117701. [CrossRef] [PubMed]
  19. M. Brongersma, Engineering optical nanoantennas, Nature Photonics 2 (2008) 270. [CrossRef]
  20. T. Zentgraf, T.P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, F. Lederer, Babinet’s principle for optical frequency metamaterials and nanoantennas, Physical Review B 76 (2007) 033407. [CrossRef]
  21. J.-S. Huang, T. Feichtner, P. Biagioni, B. Hecht, Impedance matching and emission properties of nanoantennas in an optical nanocircuit, Nano Letters 9 (2009) 1897. [CrossRef]
  22. J. Li, A. Salandrino, N. Engheta, Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain, Physical Review B 76 (2007) 245403. [CrossRef]
  23. H. Wong, K.-M. Mak, K.-M. Luk, Directional wideband shorted bowtie antenna, Microwave and Optical Technology Letters 48 (2006) 1670–1672. [CrossRef]
  24. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nature Photonics 3 (2009) 654–657. [CrossRef]
  25. A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, N.F. van Hulst, Unidirectional emission of a quantum dot coupled to a nanoantenna, Science 329 (2010) 930–933. [CrossRef] [PubMed]
  26. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas, Physics Review Letters 94 (2005) 017402. [CrossRef] [PubMed]
  27. T. Kosako, Y. Kadoya, H.F. Hofmann, Directional control of light by a nano-optical Yagi-Uda antenna, Nature Photonics 4 (2010) 312–315. [CrossRef]
  28. G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Ciracì, C. Fang, J. Huang, D.R. Smith, M.H. Mikkelsen, Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas, Nature Photonics 8 (2014) 835–840. [CrossRef]
  29. A. Moreau, C. Ciracì, J.J. Mock, R.T. Hill, Q. Wang, B.J. Wiley, A. Chilkoti, D.R. Smith, Controlled-reflectance surfaces with film-coupled colloidal nanoantennas, Nature 492 (2012) 86. [CrossRef]
  30. J.B. Lassiter, F. McGuire, J.J. Mock, C. Ciracì, R.T. Hill, B.J. Wiley, A. Chilkoti, D.R. Smith, Plasmonic waveguide modes of film-coupled metallic nanocubes, Nano Letters 13 (2013) 5866. [CrossRef]
  31. A. Alu, N. Engheta, Tuning the scattering response of optical nanoantennas with nanocircuit loads, Nature Photonics 2 (2008) 307–310. [CrossRef]
  32. P. Biagioni, J.S. Huang, B. Hecht, Nanoantennas for visible and infrared radiation, Reports on Progress in Physics 75 (2012) 024402. [CrossRef]
  33. L. Novotny, N. Van Hulst, Antennas for light, Nature Photonics 5 (2011) 83–90. [CrossRef]
  34. J.H. Kang, D.S. Kim, Q.-H. Park, Local capacitor model for plasmonic electric field enhancement, Physical Review Letters 102 (2009) 093906. [CrossRef]
  35. K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, Optical antennas: resonators for local field enhancement, Journal of Applied Physics 94 (2003) 4632–4642. [CrossRef]
  36. J. Aizpurua, G.W. Bryant, L.J. Richter, F.G. De Abajo, B.K. Kelley, T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Physics Review B 71 (2005) 235420. [CrossRef]
  37. E. Cubukcu, E.A. Kort, K.B. Crozier, F. Capasso, Plasmonic laser antenna, Applied Physics Letters 89 (2006) 093120. [CrossRef]
  38. E.K. Payne, K.L. Shuford, S. Park, G.C. Schatz, C.A. Mirkin, Multipole plasmon resonances in gold nanorods, Journal of Physical Chemistry B 110 (2006) 2150–2154. [CrossRef] [PubMed]
  39. P.J. Burke, S. Li, Z. Yu, Quantitative theory of nanowire and nanotube antenna performance, IEEE Transactions on Nanotechnology 5 (2006) 314–334. [CrossRef]
  40. G.W. Hanson, On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas, IEEE Transactions on Antennas and Propagation 54 (2006) 3677–3685. [CrossRef]
  41. P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas, Science 308 (2005) 1607–1609. [CrossRef] [PubMed]
  42. A. Alu, N. Engheta, Wireless at the nanoscale: optical interconnects using matched nanoantennas, Physical Review Letters 104 (2010) 213902. [CrossRef]
  43. N. Engheta, A. Salandrino, A. Alù, Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors, Physical Review Letters 95 (2005) 095504. [CrossRef]
  44. P.A. Franken, A.E. Hill, C.E. Peters, G. Weinreich, Generation of optical harmonics, Physical Review Letters 7 (1961) 118. [CrossRef]
  45. Y.-R. Shen, Principles of nonlinear optics, Wiley-Interscience, New York, USA, 1984.
  46. R.W. Boyd, Nonlinear optics, Academic Press, San Diego, CA, 2006.
  47. H. Harutyunyan, G. Volpe, L. Novotny, Nonlinear optical antennas, in: A. Alu, M. Agio (Eds.), Optical antennas, Cambridge University Press, New York, 2012, pp. 131–143.
  48. M. Kauranen, A.V. Zayats, Nonlinear plasmonics, Nature Photonics 6 (2012) 737–748. [CrossRef]
  49. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R.M. Osgood Jr., K.J. Malloy, S.R.J. Brueck, Second harmonic generation from a nanopatterned isotropic nonlinear material, Nano Letters 6 (2006) 1027–1030. [CrossRef]
  50. M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials, Science 313 (2006) 502–504. [CrossRef] [PubMed]
  51. F. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, M. Wegener, Second-harmonic generation from split-ring resonators on a gas substrate, Optics Letters 34 (2009) 1997–1999. [CrossRef] [PubMed]
  52. H. Suchowski, K. O’Brien, Z.J. Wong, A. Salandrino, X. Yin, X. Zhang, Phase mismatch-free nonlinear propagation in optical zero-index materials, Science 342 (2013) 1223–1226. [CrossRef]
  53. K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang, Predicting nonlinear properties of metamaterials from the linear response, Nature Materials 14 (2015) 379–383. [CrossRef]
  54. S. Lan, L. Kang, D.T. Schoen, S.P. Rodrigues, Y. Cui, M.L. Brongersma, W. Cai, Backward phase-matching for nonlinear optical generation in negative-index materials, Nature Materials 14 (2015) 807–811. [CrossRef]
  55. M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, F. Ciccacci, M. Finazzi, Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation, Nature Nanotechnology 10 (2015) 412. [CrossRef]
  56. N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen, Controlling light with metamaterial-based nonlinear photonic crystals, Nature Photonics 9 (2015) 180. [CrossRef]
  57. J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, M.A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband polaritons, Nature 511 (2014) 65–69. [CrossRef]
  58. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, A. Alù, Temporal soliton excitation in an ε-near-zero plasmonic metamaterial, Optics Letters 39 (2014) 5566–5569. [CrossRef]
  59. C. Argyropoulos, G. D’Aguanno, A. Alù, Giant second harmonic generation efficiency and ideal phase matching with a double e-near-zero cross-slit metamaterial, Physical Review B 89 (2014) 235401. [CrossRef]
  60. C. Argyropoulos, P.Y. Chen, A. Alù, Enhanced nonlinear effects in metamaterials and plasmonics, Advanced Electromagnetics 1 (2012) 46–51. [CrossRef]
  61. P.Y. Chen, A. Alu, Optical nanoantenna arrays loaded with nonlinear materials, Physical Review B 82 (2010) 235405. [CrossRef]
  62. C. Argyropoulos, P.Y. Chen, G. D’Aguanno, N. Engheta, A. Alu, Boosting optical nonlinearities in ε-near-zero plasmonic channels, Physical Review B 85 (2012) 045129. [CrossRef]
  63. C. Argyropoulos, P.Y. Chen, F. Monticone, G. D’Aguanno, A. Alu, Nonlinear plasmonic cloaks to realize giant all-optical scattering switching, Physical Review Letters 108 (2012) 263905. [CrossRef]
  64. P.Y. Chen, C. Argyropoulos, A. Alu, Enhanced nonlinearities using plasmonic nanoantennas, Nanophotonics 1 (2012) 221–233.
  65. K.D. Ko, A. Kumar, K.H. Fung, R. Ambekar, G.L. Liu, N.X. Fang, K.C. Toussaint Jr., Nonlinear optical response from arrays of Au bowtie nanoantennas, Nano Letters 11 (2010) 61–65.
  66. C. Argyropoulos, C. Ciracì, D.R. Smith, Enhanced optical bistability with film-coupled plasmonic nanocubes, Applied Physics Letters 104 (2014) 063108. [CrossRef]
  67. J. Butet, O.J. Martin, Manipulating the optical bistability in a nonlinear plasmonic nanoantenna array with a reflecting surface, Plasmonics 10 (2015) 203–209. [CrossRef]
  68. F. Zhou, Y. Liu, Z.-Y. Li, Y. Xia, Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials, Optics Express 18 (2010) 13337–13344. [CrossRef]
  69. E.D. Palik, Handbook of optical constants of solids, Academic Press, New York, 1985.
  70. B. Gallinet, A.M. Kern, O.J. Martin, Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach, Journal of Optical Society of America A 27 (2010) 2261–2271. [CrossRef]
  71. B. Gallinet, O.J. Martin, Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation, Photonics and Nanostructures – Fundamentals and Applications 8 (2010) 278–284. [CrossRef]
  72. A.L. Lereu, J.P. Hoogenboom, N.F. van Hulst, Gap nanoantennas toward molecular plasmonic devices, International Journal of Optics 2012 (2012) 502930. [CrossRef]
  73. C. Ciracì, A. Rose, C. Argyropoulos, D.R. Smith, Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles, Journal of Optical Society of America B 31 (2014) 2601–2607. [CrossRef]
  74. T.B. Hoang, G.M. Akselrod, C. Argyropoulos, J. Huang, D.R. Smith, M.H. Mikkelsen, Ultrafast spontaneous emission source using plasmonic nanoantennas, Nature Communications 6 (2015) 7788. [CrossRef]
  75. N. Large, M. Abb, J. Aizpurua, O.L. Muskens, Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches, Nano Letters 10 (2010) 1741–1746. [CrossRef]
  76. B.J. Roxworthy, K.D. Ko, A. Kumar, K.H. Fung, E.K.C. Chow, G.L. Liu, N.X. Fang, K.C. Toussaint Jr., Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting, Nano Letters 12 (2012) 796–801. [CrossRef]
  77. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, D.W. Pohl, Scanning near-field optical microscopy with aperture probes: fundamentals and applications, Journal of Chemical Physics 112 (2000) 7761–7774. [CrossRef]
  78. M.A. Paesler, P.J. Moyer, Near-field optics: theory, instrumentation, and applications, Wiley-Interscience, New York, 1996.
  79. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry 58 (2007) 267–297. [CrossRef] [PubMed]
  80. I. Kocakarin, K. Yegin, Glass superstrate nanoantennas for infrared energy harvesting applications, International Journal of Antennas and Propagation 2013 (2013) 245960. [CrossRef]
  81. L. Cao, P. Fan, A.P. Vasudev, J.S. White, Z. Yu, W. Cai, J.A. Schuller, S. Fan, M.L. Brongersma, Semiconductor nanowire optical antenna solar absorbers, Nano Letters 10 (2010) 439–445. [CrossRef]
  82. S. Kawata, Nano-optics, Springer Series in Optical Sciences, vol. 84, Springer, Berlin, 2002. [CrossRef]
  83. J. Alda, J.M. Rico-García, J.M. López-Alonso, G. Boreman, Optical antennas for nano-photonic applications, Nanotechnology 16 (2005) S230. [CrossRef]
  84. G.M. Akselrod, T. Ming, C. Argyropoulos, T.B. Hoang, Y. Lin, X. Ling, D.R. Smith, J. Kong, M.H. Mikkelsen, Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors, Nano Letters 15 (2015) 3578–3584. [CrossRef]
  85. T.S. van Zanten, M.J. Lopez-Bosque, M.F. Garcia-Parajo, Imaging individual proteins and nanodomains on intact cell membranes with a probe based optical antenna, Small 6 (2010) 270–275. [CrossRef]
  86. A. Ahmed, R. Gordon, Directivity enhanced Raman spectroscopy using nanoantennas, Nano Letters 11 (2011) 1800–1803. [CrossRef]
  87. P. Kühler, E.-M. Roller, R. Schreiber, T. Liedl, T. Lohmüller, J. Feldmann, Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy, Nano Letters 14 (2014) 2914. [CrossRef]
  88. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials 9 (2010) 205–213. [CrossRef] [PubMed]
  89. M.W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N.S. King, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum plasmonic nanoantennas, Nano Letters 12 (2012) 6000–6004. [CrossRef]
  90. C. Argyropoulos, F. Monticone, G. D’Aguanno, A. Alu, Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths, Applied Physics Letters 103 (2013) 143113. [CrossRef]
  91. N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, F. Capasso, Flat optics: controlling wavefronts with optical antenna metasurfaces, IEEE Journal of Selected Topics in Quantum Electronics 19 (2013) 4700423. [CrossRef]
  92. F. Monticone, A. Alu, Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials, Chinese Physics B 23 (2014) 047809. [CrossRef]
  93. N. Yu, F. Capasso, Flat optics with designer metasurfaces, Nature Materials 13 (2014) 139–150. [CrossRef]
  94. N. Meinzer, W.L. Barnes, I.R. Hooper, Plasmonic meta-atoms and metasurfaces, Nature Photonics 8 (2014) 889–898. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.