EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
Article Number 12
Number of page(s) 11
Published online 26 January 2016
  1. C. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the interpretation and characterization of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials, Metamaterials 3 (2009) 100–112. [CrossRef]
  2. C. Holloway, E.F. Kuester, J. Gordon, J. O’Hara, J. Booth, D. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54 (2012) 10–35. [CrossRef]
  3. N. Yu, F. Capasso, Flat optics with designer metasurfaces, Nature Mater. 13 (2014) 139–150. [CrossRef]
  4. K. Achouri, M.A. Salem, C. Caloz, General metasurface synthesis based on susceptibility tensors, IEEE Trans. Antennas Propag. 63 (2015) 2977–2991. [CrossRef]
  5. M.A. Salem, C. Caloz, Manipulating light at distance by a metasurface using momentum transformation, Opt. Express 22 (2014) 14530–14543. [CrossRef]
  6. C. Pfeiffer, A. Grbic, Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis, Phys. Rev. Appl. 2 (2014) 044011. [CrossRef]
  7. T. Niemi, A. Karilainen, S. Tretyakov, Synthesis of polarization transformers, IEEE Trans. Antennas Propag. 61 (2013) 3102–3111. [CrossRef]
  8. M. Selvanayagam, G. Eleftheriades, Polarization control using tensor huygens surfaces, IEEE Trans. Antennas Propag. 62 (2014) 6155–6168. [CrossRef]
  9. M.M. Idemen, Discontinuities in the electromagnetic field, John Wiley & Sons, New York, 2011. [CrossRef]
  10. E.F. Kuester, M. Mohamed, M. Piket-May, C. Holloway, Averaged transition conditions for electromagnetic fields at a metafilm, IEEE Trans. Antennas Propag. 51 (2003) 2641–2651. [CrossRef]
  11. A.H. Sihvola, A.J. Viitanen, I.V. Lindell, S.A. Tretyakov, Electromagnetic waves in chiral and bi-isotropic media, ser. The Artech House Antenna Library, Artech House, Norwood, Massachusetts, 1994.
  12. B.A. Munk, Frequency selective surfaces: theory and design, John Wiley & Sons, New York, 2000. [CrossRef]
  13. F. Monticone, N.M. Estakhri, A. Alù, Full control of nanoscale optical transmission with a composite metascreen, Phys. Rev. Lett. 110 (2013) 203903. [CrossRef]
  14. C. Pfeiffer, A. Grbic, Millimeter-wave transmitarrays for wavefront and polarization control, IEEE Trans. Microwave Theory Tech. 61 (2013) 4407–4417. [CrossRef]
  15. J.-S.G. Hong, M.J. Lancaster, Microstrip filters for RF/microwave applications, Vol. 167, John Wiley & Sons, New York, 2004.
  16. G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metall ösungen, Annalen der Physik 330 (1908) 377–445. [NASA ADS] [CrossRef]
  17. M. Kerker, The scattering of light and other electromagnetic radiation: physical chemistry: a series of monographs, Vol. 16, Academic press, Cambridge, Massachusetts, 2013.
  18. A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, Y. Kivshar, Towards all-dielectric metamaterials and nanophotonics, Proc. SPIE 9502 (2015) 950203–950217. [CrossRef]
  19. A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nature Nanotech. 10 (2015) 937–943. [CrossRef]
  20. V.S. Asadchy, I.A. Faniayeu, Y. Ra’di, S.A. Khakhomov, I.V. Semchenko, S.A. Tretyakov, Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption, Phys. Rev. X 5 (2015) 031005.
  21. B. Saleh, M. Teich, Fundamentals of Photonics, ser. Wiley Series in Pure and Applied Optics, Wiley, New York, 2007.
  22. J. Nye, M. Berry, Dislocations in wave trains, Philos. Trans. R. Soc. Lond. Ser. B: Math. Phys. Eng. Sci. 336 (1974) 165–190. [NASA ADS] [CrossRef]
  23. E. Karimi, S.A. Schulz, I. De Leon, H. Qassim, J. Upham, R.W. Boyd, Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface, Light: Science & Applications 3 (2014) e167. [CrossRef]
  24. X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, S. Wen, Generation of cylindrical vector vortex beams by two cascaded metasurfaces, Opt. Express 22 (2014) 17207–17215. [CrossRef]
  25. C. Pfeiffer, A. Grbic, Controlling vector bessel beams with metasurfaces, Phys. Rev. Appl. 2 (2014) 044012. [CrossRef]
  26. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, E. Santamato, Hypergeometric-gaussian beams, Opt. Lett. 32 (2007) 3053–3055. [CrossRef]
  27. S.N. Burokur, J.-P. Daniel, P. Ratajczak, A. de Lustrac, Tunable bilayered metasurface for frequency reconfigurable directive emissions, Appl. Phys. Lett. 97 (2010) 064101. [CrossRef]
  28. A. Fallahi, J. Perruisseau-Carrier, Design of tunable biperiodic graphene metasurfaces, Phys. Rev. B 86 (2012) 195408. [CrossRef]
  29. S. Saadat, H. Mosallaei, Tunable and active metasurface-based on-chip antennas, Antennas and Propagation Society International Symposium (APSURSI), 2012, IEEE, Chicago, 2012, pp. 1–2. [CrossRef]
  30. B.O. Zhu, J. Zhao, Y. Feng, Active impedance metasurface with full 360° reflection phase tuning, Sci. Rep. 3 (2013) 3059. [CrossRef]
  31. Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, Y. Zhang, Spatial terahertz modulator, Sci. Rep. 3 (2013) 3347. [CrossRef]
  32. S.E. Harris, Electromagnetically induced transparency, Phys. Today 50 (2008) 36–42. [CrossRef]
  33. R.C. Jones, A new calculus for the treatment of optical systems. I. Description and discussion of the calculus, J. Opt. Soc. Am. 31 (1941) 488–493. [NASA ADS] [CrossRef]
  34. C.L. Hogan, The ferromagnetic Faraday effect at microwave frequencies and its applications, Bell Syst. Tech. J. 31 (1952) 1–31. [CrossRef]
  35. C. Hogan, The ferromagnetic Faraday effect at microwave frequencies and its applications, Rev. Mod. Phys. 25 (1953) 253. [CrossRef]
  36. T. Kodera, C. Caloz, Non-reciprocal magnetic frequency selective surface Antennas and Propagation, 2009. EuCAP 2009. 3rd European Conference on, IEEE, Berlin, 2009, pp. 1552–1555.
  37. T. Kodera, A. Parsa, C. Caloz, Non-reciprocal ferrite antenna radome: the faradome, Antennas and Propagation Society International Symposium, 2009. APSURSI’09, IEEE, North Charleston, SC, USA, 2009, pp. 1–4. [CrossRef]
  38. A. Parsa, T. Kodera, C. Caloz, Ferrite based non-reciprocal radome, generalized scattering matrix analysis and experimental demonstration, IEEE Trans. Antennas Propag. 59 (2011) 810–817. [CrossRef]
  39. Y. Ra’di, V.S. Asadchy, S.A. Tretyakov, One-way transparent sheets, Phys. Rev. B 89 (2014) 075109. [CrossRef]
  40. S.A. Tretyakov, A. Sihvola, A. Sochava, C. Simovski, Magnetoelectric interactions in bi-anisotropic media, J. Electromagn. Waves Appl. 12 (1998) 481–497. [CrossRef]
  41. Z. Wang, Z. Wang, J. Wang, B. Zhang, J. Huangfu, J.D. Joannopoulos, M. Soljačić, L. Ran, Gyrotropic response in the absence of a bias field, Proc. Natl. Acad. Sci. 109 (2012) 13194–13197. [CrossRef]
  42. C. Caloz, S. Gupta, Q. Zhang, B. Nikfal, Analog signal processing, Microw. Mag. 14 (2013) 87–103. [CrossRef]
  43. F. Aieta, M.A. Kats, P. Genevet, F. Capasso, Multiwavelength achromatic metasurfaces by dispersive phase compensation, Science 347 (2015) 1342–1345. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.