Issue
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
Article Number 12
Number of page(s) 11
DOI https://doi.org/10.1051/epjam/2015016
Published online 26 January 2016
  1. C. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the interpretation and characterization of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials, Metamaterials 3 (2009) 100–112. [CrossRef] [Google Scholar]
  2. C. Holloway, E.F. Kuester, J. Gordon, J. O’Hara, J. Booth, D. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54 (2012) 10–35. [CrossRef] [Google Scholar]
  3. N. Yu, F. Capasso, Flat optics with designer metasurfaces, Nature Mater. 13 (2014) 139–150. [CrossRef] [Google Scholar]
  4. K. Achouri, M.A. Salem, C. Caloz, General metasurface synthesis based on susceptibility tensors, IEEE Trans. Antennas Propag. 63 (2015) 2977–2991. [CrossRef] [Google Scholar]
  5. M.A. Salem, C. Caloz, Manipulating light at distance by a metasurface using momentum transformation, Opt. Express 22 (2014) 14530–14543. [CrossRef] [Google Scholar]
  6. C. Pfeiffer, A. Grbic, Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis, Phys. Rev. Appl. 2 (2014) 044011. [CrossRef] [Google Scholar]
  7. T. Niemi, A. Karilainen, S. Tretyakov, Synthesis of polarization transformers, IEEE Trans. Antennas Propag. 61 (2013) 3102–3111. [CrossRef] [Google Scholar]
  8. M. Selvanayagam, G. Eleftheriades, Polarization control using tensor huygens surfaces, IEEE Trans. Antennas Propag. 62 (2014) 6155–6168. [CrossRef] [Google Scholar]
  9. M.M. Idemen, Discontinuities in the electromagnetic field, John Wiley & Sons, New York, 2011. [CrossRef] [Google Scholar]
  10. E.F. Kuester, M. Mohamed, M. Piket-May, C. Holloway, Averaged transition conditions for electromagnetic fields at a metafilm, IEEE Trans. Antennas Propag. 51 (2003) 2641–2651. [CrossRef] [Google Scholar]
  11. A.H. Sihvola, A.J. Viitanen, I.V. Lindell, S.A. Tretyakov, Electromagnetic waves in chiral and bi-isotropic media, ser. The Artech House Antenna Library, Artech House, Norwood, Massachusetts, 1994. [Google Scholar]
  12. B.A. Munk, Frequency selective surfaces: theory and design, John Wiley & Sons, New York, 2000. [CrossRef] [Google Scholar]
  13. F. Monticone, N.M. Estakhri, A. Alù, Full control of nanoscale optical transmission with a composite metascreen, Phys. Rev. Lett. 110 (2013) 203903. [CrossRef] [Google Scholar]
  14. C. Pfeiffer, A. Grbic, Millimeter-wave transmitarrays for wavefront and polarization control, IEEE Trans. Microwave Theory Tech. 61 (2013) 4407–4417. [CrossRef] [Google Scholar]
  15. J.-S.G. Hong, M.J. Lancaster, Microstrip filters for RF/microwave applications, Vol. 167, John Wiley & Sons, New York, 2004. [Google Scholar]
  16. G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metall ösungen, Annalen der Physik 330 (1908) 377–445. [NASA ADS] [CrossRef] [Google Scholar]
  17. M. Kerker, The scattering of light and other electromagnetic radiation: physical chemistry: a series of monographs, Vol. 16, Academic press, Cambridge, Massachusetts, 2013. [Google Scholar]
  18. A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, Y. Kivshar, Towards all-dielectric metamaterials and nanophotonics, Proc. SPIE 9502 (2015) 950203–950217. [CrossRef] [Google Scholar]
  19. A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nature Nanotech. 10 (2015) 937–943. [CrossRef] [Google Scholar]
  20. V.S. Asadchy, I.A. Faniayeu, Y. Ra’di, S.A. Khakhomov, I.V. Semchenko, S.A. Tretyakov, Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption, Phys. Rev. X 5 (2015) 031005. [Google Scholar]
  21. B. Saleh, M. Teich, Fundamentals of Photonics, ser. Wiley Series in Pure and Applied Optics, Wiley, New York, 2007. [Google Scholar]
  22. J. Nye, M. Berry, Dislocations in wave trains, Philos. Trans. R. Soc. Lond. Ser. B: Math. Phys. Eng. Sci. 336 (1974) 165–190. [NASA ADS] [CrossRef] [Google Scholar]
  23. E. Karimi, S.A. Schulz, I. De Leon, H. Qassim, J. Upham, R.W. Boyd, Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface, Light: Science & Applications 3 (2014) e167. [CrossRef] [Google Scholar]
  24. X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, S. Wen, Generation of cylindrical vector vortex beams by two cascaded metasurfaces, Opt. Express 22 (2014) 17207–17215. [CrossRef] [Google Scholar]
  25. C. Pfeiffer, A. Grbic, Controlling vector bessel beams with metasurfaces, Phys. Rev. Appl. 2 (2014) 044012. [CrossRef] [Google Scholar]
  26. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, E. Santamato, Hypergeometric-gaussian beams, Opt. Lett. 32 (2007) 3053–3055. [CrossRef] [Google Scholar]
  27. S.N. Burokur, J.-P. Daniel, P. Ratajczak, A. de Lustrac, Tunable bilayered metasurface for frequency reconfigurable directive emissions, Appl. Phys. Lett. 97 (2010) 064101. [CrossRef] [Google Scholar]
  28. A. Fallahi, J. Perruisseau-Carrier, Design of tunable biperiodic graphene metasurfaces, Phys. Rev. B 86 (2012) 195408. [CrossRef] [Google Scholar]
  29. S. Saadat, H. Mosallaei, Tunable and active metasurface-based on-chip antennas, Antennas and Propagation Society International Symposium (APSURSI), 2012, IEEE, Chicago, 2012, pp. 1–2. [CrossRef] [Google Scholar]
  30. B.O. Zhu, J. Zhao, Y. Feng, Active impedance metasurface with full 360° reflection phase tuning, Sci. Rep. 3 (2013) 3059. [CrossRef] [Google Scholar]
  31. Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, Y. Zhang, Spatial terahertz modulator, Sci. Rep. 3 (2013) 3347. [CrossRef] [Google Scholar]
  32. S.E. Harris, Electromagnetically induced transparency, Phys. Today 50 (2008) 36–42. [CrossRef] [Google Scholar]
  33. R.C. Jones, A new calculus for the treatment of optical systems. I. Description and discussion of the calculus, J. Opt. Soc. Am. 31 (1941) 488–493. [NASA ADS] [CrossRef] [Google Scholar]
  34. C.L. Hogan, The ferromagnetic Faraday effect at microwave frequencies and its applications, Bell Syst. Tech. J. 31 (1952) 1–31. [CrossRef] [Google Scholar]
  35. C. Hogan, The ferromagnetic Faraday effect at microwave frequencies and its applications, Rev. Mod. Phys. 25 (1953) 253. [CrossRef] [Google Scholar]
  36. T. Kodera, C. Caloz, Non-reciprocal magnetic frequency selective surface Antennas and Propagation, 2009. EuCAP 2009. 3rd European Conference on, IEEE, Berlin, 2009, pp. 1552–1555. [Google Scholar]
  37. T. Kodera, A. Parsa, C. Caloz, Non-reciprocal ferrite antenna radome: the faradome, Antennas and Propagation Society International Symposium, 2009. APSURSI’09, IEEE, North Charleston, SC, USA, 2009, pp. 1–4. [CrossRef] [Google Scholar]
  38. A. Parsa, T. Kodera, C. Caloz, Ferrite based non-reciprocal radome, generalized scattering matrix analysis and experimental demonstration, IEEE Trans. Antennas Propag. 59 (2011) 810–817. [CrossRef] [Google Scholar]
  39. Y. Ra’di, V.S. Asadchy, S.A. Tretyakov, One-way transparent sheets, Phys. Rev. B 89 (2014) 075109. [CrossRef] [Google Scholar]
  40. S.A. Tretyakov, A. Sihvola, A. Sochava, C. Simovski, Magnetoelectric interactions in bi-anisotropic media, J. Electromagn. Waves Appl. 12 (1998) 481–497. [CrossRef] [Google Scholar]
  41. Z. Wang, Z. Wang, J. Wang, B. Zhang, J. Huangfu, J.D. Joannopoulos, M. Soljačić, L. Ran, Gyrotropic response in the absence of a bias field, Proc. Natl. Acad. Sci. 109 (2012) 13194–13197. [CrossRef] [Google Scholar]
  42. C. Caloz, S. Gupta, Q. Zhang, B. Nikfal, Analog signal processing, Microw. Mag. 14 (2013) 87–103. [CrossRef] [Google Scholar]
  43. F. Aieta, M.A. Kats, P. Genevet, F. Capasso, Multiwavelength achromatic metasurfaces by dispersive phase compensation, Science 347 (2015) 1342–1345. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.