Open Access
Review
Issue
EPJ Applied Metamaterials
Volume 1, 2014
Article Number 7
Number of page(s) 12
DOI https://doi.org/10.1051/epjam/2015001
Published online 18 March 2015
  1. H. Chen, Metamaterials: constitutive parameters, performance, and chemical methods for realization, Journal of Materials Chemistry 21 (2011) 6452–6463. [CrossRef] [Google Scholar]
  2. Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology, Chemical Society Reviews 40 (2011) 2494–2507. [CrossRef] [PubMed] [Google Scholar]
  3. A. Alù, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Physical Review E 72 (2005) 016623. [CrossRef] [Google Scholar]
  4. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312 (2006) 1780–1782. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. U. Leonhardt, Optical conformal mapping, Science 312 (2006) 1777–1780. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. U. Leonhardt, T. Tyc, Broadband invisibility by non-Euclidean cloaking, Science 323 (2009) 110–112. [CrossRef] [PubMed] [Google Scholar]
  7. U. Leonhardt, Notes on conformal invisibility devices, New Journal of Physics 8 (2006) 118–118. [CrossRef] [Google Scholar]
  8. W.X. Jiang, T.J. Cui, H.F. Ma, X.M. Yang, Q. Cheng, Layered high-gain lens antennas via discrete optical transformation, Applied Physics Letters 93 (2008) 221906. [CrossRef] [Google Scholar]
  9. N. Kundtz, D.R. Smith, Extreme-angle broadband metamaterial lens, Nature materials 9 (2010) 129–132. [CrossRef] [Google Scholar]
  10. M. Tsang, D. Psaltis, Magnifying perfect lens and superlens design by coordinate transformation, Physical Review B 77 (2008) 035122. [CrossRef] [Google Scholar]
  11. M. Yan, W. Yan, M. Qiu, Cylindrical superlens by a coordinate transformation, Physical Review B 78 (2008) 125133. [Google Scholar]
  12. M. Rahm, et al., Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photonics and Nanostructures – Fundamentals and Applications 6 (2008) 87–95. [CrossRef] [Google Scholar]
  13. H. Chen, C.T. Chan, Transformation media that rotate electromagnetic fields, Applied Physics Letters 90 (2007) 241105. [CrossRef] [Google Scholar]
  14. H. Chen, et al., Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Physical Review Letters 102 (2009) 183903. [CrossRef] [Google Scholar]
  15. J. Huangfu, et al., Application of coordinate transformation in bent waveguides, Journal of Applied Physics 104 (2008) 014502. [CrossRef] [Google Scholar]
  16. M. Rahm, S.A. Cummer, D. Schurig, J.B. Pendry, D.R. Smith, Optical design of reflectionless complex media by finite embedded coordinate transformations, Physical Review Letters 100 (2008) 063903. [CrossRef] [PubMed] [Google Scholar]
  17. E.E. Narimanov, A.V. Kildishev, Optical black hole: Broadband omnidirectional light absorber, Applied Physics Letters 95 (2009) 041106. [CrossRef] [Google Scholar]
  18. H. Chen, C.T. Chan, P. Sheng, Transformation optics and metamaterials, Nature Materials 9 (2010) 387–396. [CrossRef] [PubMed] [Google Scholar]
  19. Y. Liu, X. Zhang, Recent advances in transformation optics, Nanoscale 4 (2012) 5277–5292. [CrossRef] [Google Scholar]
  20. J.B. Pendry, A. Aubry, D.R. Smith, S.A. Maier, Transformation optics and subwavelength control of light, Science 337 (2012) 549–552. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. G.W. Milton, M. Briane, J.R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New Journal of Physics 8 (2006) 248–248. [CrossRef] [Google Scholar]
  22. U. Leonhardt, Transformation optics and the geometry of light, Progress in Optics 53 (2008) 69–152. [CrossRef] [Google Scholar]
  23. S.A. Cummer, B.-I. Popa, D. Schurig, D.R. Smith, Full-wave simulations of electromagnetic cloaking structures, Physical Review E 74 (2006) 036621. [CrossRef] [Google Scholar]
  24. D. Schurig, et al., Metamaterial electromagnetic cloak at microwave frequencies, Science 314 (2006) 977–980. [CrossRef] [PubMed] [Google Scholar]
  25. Y. Huang, Y. Feng, T. Jiang, Electromagnetic cloaking by layered structure of homogeneous isotropic materials, Optics express 15 (2007) 11133–11141. [CrossRef] [PubMed] [Google Scholar]
  26. B. Zhang, H. Chen, B.-I. Wu, J. Kong, Extraordinary surface voltage effect in the invisibility cloak with an active device inside, Physical Review Letters 100 (2008) 063904. [CrossRef] [PubMed] [Google Scholar]
  27. B. Zhang, et al., Response of a cylindrical invisibility cloak to electromagnetic waves, Physical Review B 76 (2007) 121101. [CrossRef] [Google Scholar]
  28. Y. Luo, J. Zhang, H. Chen, S. Xi, B.-I. Wu, Cylindrical cloak with axial permittivity/permeability spatially invariant, Applied Physics Letters 93 (2008) 033504. [CrossRef] [Google Scholar]
  29. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, G.W. Milton, Nonmagnetic cloak with minimized scattering, Applied Physics Letters 91 (2007) 111105. [CrossRef] [Google Scholar]
  30. L. Huang, et al., Generalized transformation for nonmagnetic invisibility cloak with minimized scattering, JOSA B 28 (2011) 922–928. [CrossRef] [Google Scholar]
  31. B. Kanté, D. Germain, A. de Lustrac, Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies, Physical Review B 80 (2009) 201104. [CrossRef] [Google Scholar]
  32. W. Yan, M. Yan, M. Qiu, Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering, Applied Physics Letters 93 (2008) 021909. [CrossRef] [Google Scholar]
  33. J. Zhang, Y. Luo, N.A. Mortensen, Minimizing the scattering of a nonmagnetic cloak, Applied Physics Letters 96 (2010) 113511. [CrossRef] [Google Scholar]
  34. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials, Nature Photonics 1 (2007) 224–227. [CrossRef] [Google Scholar]
  35. Z. Chang, X. Zhou, J. Hu, G. Hu, Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries, Optics express 18 (2010) 6089–6096. [CrossRef] [Google Scholar]
  36. K. Yao, H. Chen, Y. Liu, X. Jiang, An analogy strategy for transformation optics, New Journal of Physics 16 (2014) 063008. [CrossRef] [Google Scholar]
  37. P. Zhang, M. Lobet, S. He, Carpet cloaking on a dielectric half-space, Optics Express 18 (2010) 18158–18163. [CrossRef] [Google Scholar]
  38. J. Li, J.B. Pendry, Hiding under the carpet: a new strategy for cloaking, Physical Review Letters 101 (2008) 203901. [CrossRef] [PubMed] [Google Scholar]
  39. P.A. Huidobro, M.L. Nesterov, L. Martin-Moreno, F.J. Garcia-Vidal, Transformation optics for plasmonics, Nano Letters 10 (2010) 1985–1990. [CrossRef] [PubMed] [Google Scholar]
  40. Y. Liu, T. Zentgraf, G. Bartal, X. Zhang, Transformational plasmon optics, Nano Letters 10 (2010) 1991–1997. [CrossRef] [Google Scholar]
  41. J. Renger, et al., Hidden progress: broadband plasmonic invisibility, Optics Express 18 (2010) 15757–15768. [CrossRef] [Google Scholar]
  42. R. Liu, et al., Broadband ground-plane cloak, Science 323 (2009) 366–369. [CrossRef] [Google Scholar]
  43. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made of dielectrics, Nature Materials 8 (2009) 568–571. [CrossRef] [PubMed] [Google Scholar]
  44. L.H. Gabrielli, J. Cardenas, C.B. Poitras, M. Lipson, Silicon nanostructure cloak operating at optical frequencies, Nature Photonics 3 (2009) 461–463. [CrossRef] [Google Scholar]
  45. F. Zhou, et al., Hiding a realistic object using a broadband terahertz invisibility cloak, Scientific Reports 1 (2011) 78. [Google Scholar]
  46. D. Bao, et al., All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam, New Journal of Physics 13 (2011) 103023. [CrossRef] [Google Scholar]
  47. E. Kallos, C. Argyropoulos, Y. Hao, Ground-plane quasicloaking for free space, Physical Review A 79 (2009) 063825. [CrossRef] [Google Scholar]
  48. H.F. Ma, T.J. Cui, Compact-sized and broadband carpet cloak and free-space cloak, Optics Express 17 (2009) 19947–19959. [CrossRef] [Google Scholar]
  49. D. Shin, et al., Broadband electromagnetic cloaking with smart metamaterials, Nature Communications 3 (2012) 1213. [CrossRef] [Google Scholar]
  50. T. Ergin, J. Fischer, M. Wegener, Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak, Physical Review Letters 107 (2011) 173901. [CrossRef] [Google Scholar]
  51. M. Gharghi, et al., A carpet cloak for visible light, Nano Letters 11 (2011) 2825–2828. [CrossRef] [Google Scholar]
  52. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths, Science 328 (2010) 337–339. [CrossRef] [PubMed] [Google Scholar]
  53. H.F. Ma, T.J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials, Nature Communications 1 (2010) 21. [Google Scholar]
  54. N.I. Landy, N. Kundtz, D.R. Smith, Designing three-dimensional transformation optical media using quasiconformal coordinate transformations, Physical Review Letters 105 (2010) 193902. [CrossRef] [Google Scholar]
  55. B. Zhang, T. Chan, B.-I. Wu, Lateral shift makes a ground-plane cloak detectable, Physical Review Letters 104 (2010) 233903. [CrossRef] [Google Scholar]
  56. C. Li, X. Liu, F. Li, Experimental observation of invisibility to a broadband electromagnetic pulse by a cloak using transformation media based on inductor-capacitor networks, Physical Review B 81 (2010) 115133. [CrossRef] [Google Scholar]
  57. X. Liu, et al., Experimental verification of broadband invisibility using a cloak based on inductor-capacitor networks, Applied Physics Letters 95 (2009) 191107. [CrossRef] [Google Scholar]
  58. X. Sheng, C. Hongsheng, W. Bae-Ian, K. Jin Au, One-directional perfect cloak created with homogeneous material, IEEE Microwave and Wireless Components Letters 19 (2009) 131–133. [CrossRef] [Google Scholar]
  59. Y. Luo, J. Zhang, H. Chen, A rigorous analysis of plane-transformed invisibility cloaks, IEEE Transactions on Antennas and Propagation 57 (2009) 3926–3933. [CrossRef] [Google Scholar]
  60. X. Chen, et al., Macroscopic invisibility cloaking of visible light, Nature Communications 2 (2011) 176. [CrossRef] [Google Scholar]
  61. B. Zhang, Y. Luo, X. Liu, G. Barbastathis, Macroscopic invisibility cloak for visible light, Physical Review Letters 106 (2011) 033901. [CrossRef] [Google Scholar]
  62. D. Liang, et al., Robust large dimension terahertz cloaking, Advanced Materials 24 (2012) 916–921. [CrossRef] [Google Scholar]
  63. X. Xu, Y. Feng, Y. Hao, J. Zhao, T. Jiang, Infrared carpet cloak designed with uniform silicon grating structure, Applied Physics Letters 95 (2009) 184102. [CrossRef] [Google Scholar]
  64. X. Xu, Y. Feng, Z. Yu, T. Jiang, J. Zhao, Simplified ground plane invisibility cloak by multilayer dielectrics, Optics Express 18 (2010) 24477–24485. [CrossRef] [Google Scholar]
  65. J. Zhang, L. Liu, Y. Luo, S. Zhang, N.A. Mortensen, Homogeneous optical cloak constructed with uniform layered structures, Optics Express 19 (2011) 8625–8631. [CrossRef] [Google Scholar]
  66. X. Xu, et al., Broad band invisibility cloak made of normal dielectric multilayer, Applied Physics Letters 99 (2011) 154104. [CrossRef] [Google Scholar]
  67. N. Landy, D.R. Smith, A full-parameter unidirectional metamaterial cloak for microwaves, Nature Materials 12 (2013) 25–28. [CrossRef] [Google Scholar]
  68. H. Chen, B. Zheng, Broadband polygonal invisibility cloak for visible light, Scientific Reports 2 (2012) 255. [Google Scholar]
  69. T. Han, C. Qiu, X. Tang, An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation, Journal of Optics 12 (2010) 095103. [CrossRef] [Google Scholar]
  70. W. Li, J. Guan, Z. Sun, W. Wang, Q. Zhang, A near-perfect invisibility cloak constructed with homogeneous materials, Optics Express 17 (2009) 23410–23416. [CrossRef] [Google Scholar]
  71. H. Chen, et al., Ray-optics cloaking devices for large objects in incoherent natural light, Nature Communications 4 (2013) 2652. [Google Scholar]
  72. B. Edwards, A. Alù, M. Silveirinha, N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Physical Review Letters 103 (2009) 153901. [CrossRef] [Google Scholar]
  73. J.C. Soric, et al., Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space, New Journal of Physics 15 (2013) 033037. [CrossRef] [Google Scholar]
  74. D. Rainwater, et al., Experimental verification of three-dimensional plasmonic cloaking in free-space, New Journal of Physics 14 (2012) 013054. [CrossRef] [Google Scholar]
  75. A. Alù, Mantle cloak: Invisibility induced by a surface, Physical Review B 80 (2009) 245115. [CrossRef] [Google Scholar]
  76. M. Silveirinha, A. Alù, N. Engheta, Parallel-plate metamaterials for cloaking structures, Physical Review E 75 (2007) 036603. [CrossRef] [Google Scholar]
  77. Y. Ma, et al., First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping, Scientific Reports 3 (2013) 2182. [Google Scholar]
  78. S. Xu, et al., Experimental demonstration of a free-space cylindrical cloak without superluminal propagation, Physical Review Letters 109 (2012) 223903. [CrossRef] [Google Scholar]
  79. R. Schittny, M. Kadic, T. Buckmann, M. Wegener, Metamaterials Invisibility cloaking in a diffusive light scattering medium, Science 345 (2014) 427–429. [CrossRef] [Google Scholar]
  80. F. Gomory, et al., Experimental realization of a magnetic cloak, Science 335 (2012) 1466–1468. [CrossRef] [Google Scholar]
  81. S. Narayana, Y. Sato, DC magnetic cloak, Advanced Materials 24 (2012) 71–74. [CrossRef] [Google Scholar]
  82. J. Souc, et al., A quasistatic magnetic cloak, New Journal of Physics 15 (2013) 053019. [CrossRef] [Google Scholar]
  83. T. Han, et al., Manipulating DC currents with bilayer bulk natural materials, Advanced Materials 26 (2014) 3478–3483. [CrossRef] [Google Scholar]
  84. Q. Ma, Z.L. Mei, S.K. Zhu, T.Y. Jin, T.J. Cui, Experiments on active cloaking and illusion for laplace equation, Physical Review Letters 111 (2013) 173901. [CrossRef] [Google Scholar]
  85. F. Yang, Z.L. Mei, T.Y. Jin, T.J. Cui, DC electric invisibility cloak, Physical Review Letters 109 (2012) 053902. [CrossRef] [Google Scholar]
  86. F. Yang, et al., A negative conductivity material makes a dc invisibility cloak hide an object at a distance, Advanced Functional Materials 23 (2013) 4306–4310. [CrossRef] [Google Scholar]
  87. T. Mitchell, et al., Perfect surface wave cloaks, Physical Review Letters 111 (2013) 213901. [CrossRef] [Google Scholar]
  88. J.M. Lukens, D.E. Leaird, A.M. Weiner, A temporal cloak at telecommunication data rate, Nature 498 (2013) 205–208. [CrossRef] [Google Scholar]
  89. H. Chen, C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Applied Physics Letters 91 (2007) 183518. [CrossRef] [Google Scholar]
  90. S. Cummer, et al., Scattering theory derivation of a 3D acoustic cloaking shell, Physical Review Letters 100 (2008) 024301. [CrossRef] [PubMed] [Google Scholar]
  91. S.A. Cummer, D. Schurig, One path to acoustic cloaking, New Journal of Physics 9 (2007) 45–45. [CrossRef] [Google Scholar]
  92. A.N. Norris, Acoustic cloaking theory, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464 (2008) 2411–2434. [CrossRef] [Google Scholar]
  93. L. Sanchis, et al., Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere, Physical Review Letters 110 (2013) 124301. [CrossRef] [Google Scholar]
  94. M. Farhat, S. Enoch, S. Guenneau, A. Movchan, Broadband cylindrical acoustic cloak for linear surface waves in a fluid, Physical Review Letters 101 (2008) 134501. [CrossRef] [PubMed] [Google Scholar]
  95. S. Zhang, C. Xia, N. Fang, Broadband acoustic cloak for ultrasound waves, Physical Review Letters 106 (2011) 024301. [CrossRef] [PubMed] [Google Scholar]
  96. B.-I. Popa, L. Zigoneanu, S.A. Cummer, Experimental acoustic ground cloak in air, Physical Review Letters 106 (2011) 253901. [CrossRef] [Google Scholar]
  97. L. Zigoneanu, B.I. Popa, S.A. Cummer, Three-dimensional broadband omnidirectional acoustic ground cloak, Nature Materials 13 (2014) 352–355. [CrossRef] [Google Scholar]
  98. T. Han, et al., Experimental demonstration of a bilayer thermal cloak, Physical Review Letters 112 (2014) 054302. [CrossRef] [PubMed] [Google Scholar]
  99. T. Han, T. Yuan, B. Li, C.W. Qiu, Homogeneous thermal cloak with constant conductivity and tunable heat localization, Scientific Reports 3 (2013) 1593. [Google Scholar]
  100. Y. Ma, L. Lan, W. Jiang, F. Sun, S. He, A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity, NPG Asia Materials 5 (2013) e73. [CrossRef] [Google Scholar]
  101. H. Xu, X. Shi, F. Gao, H. Sun, B. Zhang, Ultrathin three-dimensional thermal cloak, Physical Review Letters 112 (2014) 054301. [CrossRef] [PubMed] [Google Scholar]
  102. T. Buckmann, M. Thiel, M. Kadic, R. Schittny, M. Wegener, An elasto-mechanical unfeelability cloak made of pentamode metamaterials, Nature Communications 5 (2014) 4130. [CrossRef] [Google Scholar]
  103. M. Farhat, S. Guenneau, S. Enoch, , Ultrabroadband elastic cloaking in thin plates, Physical Review Letters 103 (2009) 024301. [CrossRef] [Google Scholar]
  104. S. Zhang, D. Genov, C. Sun, X. Zhang, Cloaking of matter waves, Physical Review Letters 100 (2008) 123002. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.