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Abstract – The broad assertion here is that the current hyperbolic metamaterial world is only partially served by
investigations that incorporate only some limited version of anisotropy. Even modest deviations of the optic axis from
the main propagation axis lead to new phase shifts, which not only compete with those created by absorption but end
up dominating them. Some progress has been attempted in the literature by introducing the terms ‘‘asymmetric hyper-
bolic media’’, but it appears that this kind of asymmetry only involves an optic axis at an angle to the interface of a
uniaxial crystal. From a device point of view, many new prospects should appear and the outcomes of the investiga-
tions presented here yield a new general theory. It is emphasised that the orientation of the optic axis is a significant
determinant in the resulting optical properties. Whereas for conventional anisotropic waveguides homogeneous prop-
agating waves occur over a limited range of angular dispositions of the optic axis it is shown that for a hyperbolic
guide a critical angular setting exists, above which the guided waves are always homogeneous. This has significant
implications for metawaveguide designs. The resulting structures are more tolerant to optic axis misalignment.
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1 Introduction

The interest in calcite (Iceland spar) dates back to 1669 and
the work of Bartholin [1]. This means that the theory of prop-
agation of electromagnetic waves in such uniaxial anisotropic
crystals has naturally been of interest for some considerable
time. Indeed, the early investigations are extremely useful in
forming a background and vital points of contact for the crea-
tion of new horizons in the global surge of interest in what has
become known as hyperbolic [2] non-magnetic metamaterial.
The current hyperbolic metamaterial world is only partially
served by investigations that incorporate some limited version
of anisotropy. In order to develop new pathways, it should first
of all be noted that readily available uniaxial non-metamaterial
crystals, like calcite, have a direction around which rotational
symmetry is apparent. This direction is called the optic axis
and, given a rectangular coordinate system, it is usually set
to lie along the z-axis, which in the model presented here is
going to be the direction of wave propagation. Adopting this
step leads to the permittivity tensor [3] emerging in diagonal
form, possessing equal x and y components that are unequal
to the component associated with the z-direction. Hyperbolic
metamaterials have the same x and y tensor properties
but possess a negative z-component. A completely general

approach to the constructive manipulation of the optic axis
position in uniaxial crystals is required if a proper description
of any wave propagation within them is to be achieved. In this
context, as will be emphasized here, there is a need to
recognise clearly the dramatic role of anisotropy in uniaxial
metamaterial investigations, as was pointed out some years
ago [4].

In order to set up a full investigation of how the orientation
of the optic axis affects wave propagation in hyperbolic
metamaterials, it is efficient to focus upon two broad areas.
Area one includes the interrogation of a slab of metamaterial,
involving the transmission of light through an interface, or a
number of interfaces. Area two invokes the paramount role
of the optic axis when guided waves are being generated,
and it is this case that will be studied here, where it will be
shown that for a hyperbolic film, in contrast to the usual
non-metamaterial anisotropic guides, substantial changes in
the character of guided waves occur, presenting the opportunity
for novel device design.

In general, there are off-diagonal permittivity tensor ele-
ments to be considered when controlling the optic axis direc-
tion. These elements can often be brought in unintentionally
at experimental level when trying to compare measure-
ments with simulations. This is emphasised in the work by
Starodubtsev [4], in which he writes*e-mail: a.d.boardman@salford.ac.uk
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‘‘even small optical anisotropy is a much greater enemy

of the perfect lens than absorption’’.

Thus, even modest deviations of the optic axis from the
main z-axis leads to new phase shifts, which not only com-
pete with those created by absorption but may end up dom-
inating them. Some progress has been attempted by
introducing the term ‘‘asymmetric hyperbolic media’’ [5,
6], but it appears that this kind of asymmetry only involves
an optic axis at a certain angle to the interface of a uniaxial
crystal. Here, a full investigation is made of the effect that
the optic axis direction has on the existence of pure hybrid
homogeneous waves in a wave guide consisting of a hyper-
bolic film, an asymmetric substrate with all positive permit-
tivity tensor elements, and an air cover.

2 The optic axis

The historic, classic work of Knoesen, Gaylord and
Moharam [7] on non-metamaterial anisotropic uniaxial wave-
guides introduces the geometrical concept of an optic axis in
the context of a slab waveguide. It is an attractive anisotropic
design, which is why it is adopted here in order to illustrate the
new metamaterial concepts to be introduced in this investiga-
tion. It does not limit the generality of the overall conclusions
and, for the moment, all three components of the wave number,
related to right angle Cartesian coordinates will be considered.

The classic diagonal form of the permittivity tensor for a
uniaxial, non-magnetic crystal when the optic axis lies along
the z-axis is given by

�e ¼
e1 0 0

0 e2 0

0 0 e3

0
B@

1
CA: ð1Þ

Referring to Figure 1, the general direction of the optic axis
is described through the angles h and /, where h is the angle
that the optic axis makes with the z-axis, and / is the angle
between the projection of the optic axis onto the xy-plane mea-
sured from the x-axis (Figure 1).

In order to take into account a variation in the orientation
of the optic axis, the transformation matrix

T ¼
sin / cos h cos / sin h cos /

� cos / sin / cos h sin h sin /

0 � sin h cos h

0
B@

1
CA

can be used to find the elements of the general permittivity
tensor,

e ¼
exx exy exz

eyx eyy eyz

ezx ezy ezz

0
B@

1
CA ð2Þ

in the usual way, using e ¼ T�eT�1. In the lossless cases being
investigated, the tensor is Hermitian so that eij ¼ e�ji. Thus, for
real elements, the matrix is symmetric, eij ¼ eji and the ele-
ments are given by [8]

exx ¼ e1sin2/þ e1cos2hþ e3sin2hð Þcos2/;

exy ¼ eyx ¼ e3 � e1ð Þ sin / cos /sin2h;

exz ¼ ezx ¼ e3 � e1ð Þ cos / cos h sin h;

eyy ¼ e1cos2/þ e1cos2hþ e3sin2hð Þsin2/

eyz ¼ e3 � e1ð Þ sin / cos h sin h;

ezz ¼ e1sin2hþ e3cos2h ;

; ð3Þ

In special cases, for example when / = 0� and the optic
axis lies in xz-plane [9], or when h = 90� and the optic axis
lies in the xy-plane [10], the relevant permittivity tensor
can be found using the appropriate values of h and / in
equation (3).

For wave propagation, a useful characteristic is the dimen-
sionless wave number with components ji ¼ cki

x , where i = x, y
or z, c is the velocity of light in free-space and x is the angular
frequency. For the case when all the diagonal tensor elements
are positive, two surfaces in ðjx; jy ; jzÞ space will appear for a
given frequency. One is that of an ellipsoid and the other is that
of a sphere. The former is classically associated with extra-
ordinary modes where, in general, the power flow and phase
velocity direction are not parallel. The sphere is associated
with ordinary modes where the power flow and the phase
velocity directions are the same. For a metamaterial described
by a diagonal dielectric tensor with two equal positive ele-
ments, and one negative element, the ordinary wave sphere still
emerges but the ellipsoid opens up into a hyperboloid. Figure 2
demonstrates this for the case when the optic axis lies along the
z-axis [11].

Following the magnificent lead, set many years ago by the
rigorous and pioneering general work of Knoesen et al. [7], and
some pioneering work on beam propagation by Fleck and Feit
[12], the discussion presented below will focus upon a loss-
free, planar, linear uniaxial waveguide (Figure 3), where the
subscripts s, f and c are used to represent the substrate, film
and cover respectively.

In this investigation the planar guide has a hyperbolic
metamaterial central film with e3f < 0, an anisotropic substrate
with e3s > 0, and an isotropic cover, assumed for the moment

Figure 1. For a rectangular coordinate system (x, y, z), the general
position of the optic axis in a uniaxial crystal can be set at an angle
h to the z-axis. This axis then has a projection on the (x, y) plane,
which is at an angle / to the x-axis.
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to be air. The adoption of losses can be introduced at a later
stage of any device design but it is not a paramount issue here
since hyperbolic metamaterials, unlike double-negative me-
tamaterials, are not resonant. The model here has an optic axis
that is permitted to have any orientation, but is the same
throughout for the film, the substrate and the cover [7]. Uncou-
pling of the TE and TM modes occurs when the angle / = 0�.
Otherwise, the waves are hybrid and will be highlighted in
terms of pure guided homogeneous modes, pure guided inho-
mogeneous modes, or leaky guided modes [7]. A clarification
of the homogeneous modes is that these waves have constant
planar phase fronts, and are totally guided with constant ampli-
tudes. Inhomogeneous waves, on the other hand, are character-
ised by planar phase fronts with non-constant amplitudes.
Leaky modes are not totally guided by a slab waveguide.
The main thrust in this paper is in the effect that the orientation
of the optic axis has on the existence of pure hybrid homoge-
neous modes. The term ‘‘anisotropic’’ will be used when all the
elements of the permittivity tensor are positive, and, specifi-
cally, when e1 = e2 > 0; e3 > 0 5 e1. The expression ‘‘hyper-
bolic’’ will be used to mean anisotropic, with e1 = e2 > 0
and e3 < 0.

In the absence of attenuation, the values of jz (the compo-
nent of the wavenumber in the propagating direction) are real,
and, in the case of an anisotropic film, are restricted by the per-
mittivity of the isotropic cover, and the permittivity tensors of
the anisotropic substrate and the hyperbolic film. In the aniso-
tropic film case, the maximum value that jz is can take is

p
e1f.

However, under certain orientations of the optic axis, to be
determined later, this upper boundary no longer applies when
the film is hyperbolic.

If the optic axis lies in the xz-plane, then the range of val-
ues of h over which the important homogeneous waves propa-
gate, is restricted to a specific range for both anisotropic and
hyperbolic guides. For an anisotropic film, if the optic axis is
also rotated so that angle / has a positive value, then the range
of h over which homogeneous waves propagate decreases. In
contrast, when using a hyperbolic metamaterial-based guide,
increasing / from 0� results in an increase in the range of h

over which pure hybrid homogeneous modes propagate until,
at a certain critical value of /, these modes will propagate
for all angles of h between 0� and 90�. At angles of / greater
than this critical angle, modes are possible with j2

z > e1f but
these modes are hybrid inhomogeneous waves. This will be
discussed in more detail later.

3 Wave propagation and design windows

First of all, consider a bulk non-magnetic uniaxial crystal,
with a permittivity tensor eij. This material will support plane
waves of the form Aei(k�r-xt), where the complex wave vector
amplitude is A, and wave vector and position vector are,
respectively, k ¼ kx; ky ; kz

� �
and r ¼ x; y; zð Þ. Maxwell’s

equations then yield the following equation for the electric
field components Ex;Ey ;Ez

� �
.

k2 � k2
x � x2

c2 exx �kxky � x2

c2 exy �kxkz � x2

c2 exz

�kxky � x2

c2 eyx k2 � k2
y � x2

c2 eyy �kykz � x2

c2 eyz

�kxkz � x2

c2 ezx �kykz � x2

c2 eyz k2 � k2
z � x2

c2 ezz

0
BB@

1
CCA

Ex

Ey

Ez

0
B@

1
CA ¼ 0

ð4Þ
or, in terms of the dimensionless wave vector ji defined
above

j2
y þ j2

z � exx �jxjy � exy �jxjz � exz

�jxjy � exy j2
x þ j2

z � eyy �jyjz � eyz

�jxjz � exz �jyjz � eyz j2
x þ j2

y � ezz

0
B@

1
CA

Ex

Ey

Ez

0
B@

1
CA ¼ 0

ð5Þ

In the planar waveguide (Figure 2), as is usual, it is
assumed that there is no variation of the fields in the y-direction
so that setting jy ¼ 0 in equation (5) yields the biquadratic

j4
xexx þ 2j3

xjzexz þ j2
x j2

z exx þ ezzð Þ þ e2
xy þ e2

xz � exxezz � exxeyy

h i
þ 2jxjz j2

z exz þ exyeyz � exzeyy

� �
þ j4

z ezz þ j2
z e2

yz þ e2
xz � eyyezz � exxezz

� �
þ exxeyyezz þ 2exyeyzexz � exxe2

yz � eyye2
xz � e2

xyezz ¼ 0

ð6Þ

Figure 2. Cross-sections through the (jx, jz)-plane in wavenumber
space when jy = 0 and the optic axis lies along the jz-axis. The
figure shows the transition from anisotropic (ellipse) to hyperbolic
as e3 changes in incremental steps from a positive to a negative
value. The element e1 = e2 = 4.0.

Figure 3. Planar, step-index, waveguide with guided waves prop-
agating along z, for which the central film (f) is a hyperbolic
metamaterial. The cover (c) and substrate (s) can be purely
isotropic, or anisotropic, with positive tensor elements.
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which, with judicious use of equations (3), reduces to

exxj4
x þ 2exzjzj3

x þ j2
z exx þ ezzð Þ � e1 exx þ e3ð Þ

� �
j2

x

þ 2exzjzjx j2
z � e1

� �
þ j4

z ezz � j2
z e1 ezz þ e3ð Þ þ e2

1e3

which factorises to give

j2
z þ j2

x � e1 ¼ 0; exxj
2
x þ 2jzjxexz þ j2

z ezz � e1e3 ¼ 0: ð7Þ

These equations show how the elliptic case, with only posi-
tive diagonal tensor elements, turns into the hyperbolic case as
e3 becomes negative (see for example Figure 2). At this stage,
it is convenient to introduce the subscripts o and e to label the
ordinary and extraordinary mode contributions respectively.
This step results in the solutions

jox ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 � j2

z

p
jex ¼

1

exx
�jzexz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

z e2
xz � exxezz

� �
� e1e3exx

q	 

:
ð8Þ

For a waveguide, these equations give the jx=jz relation-
ship for each layer. Since the interest here is in waves that
do not attenuate in z-direction, jz must be real. Thus it is clear
from (8) that for

j2
z < e1 and j2

z e2
xz � exxezz

� �
� e1e3exx > 0 ð9Þ

the solutions for jx are real, and for

j2
z > e1 and j2

z e2
xz � exxezz

� �
þ e1e3exx < 0 ð10Þ

the solution for the ordinary mode will be imaginary, and the
solution for the extraordinary mode will be complex. In the
guide, these results will determine whether the modes are

homogeneous, inhomogeneous or leaky modes. For propaga-
tion along the guide, fields that decay away from the surfaces
into the semi-infinite media of the substrate and cover are
sought. If either or both of these layers are isotropic, then,
for guided waves, the first of (10) must be satisfied, and expo-
nential decay will occur. Using the second of (10), for an aniso-
tropic substrate, the decay will not be exponential due to the
complex values of the solution for the extraordinary modes
given by (8). In this case, solutions are sought which determine
that the electric and magnetic fields decay to zero as x! �1.

For the specific cases discussed below it is assumed that
that the cladding is air and in the anisotropic case
e1f > e1s > e3f > e3s > e1c. In the hyperbolic film case
e1f > e1s > e3f > e3s > e1c and e3f < 0. Thus, for the constitu-
ents of the slab waveguide shown in Figure 3, the necessary
conditions for pure hybrid homogeneous modes are:
for the film:

j2
z e2

xzf � exxf ezzf

� �
þ e1f e3f exxf > 0 and

e1f � j2
z > 0

ð11Þ

for the anisotropic substrate:

j2
z e2

xzs � exxsezzs

� �
þ e1se3sexxs < 0 and

e1s � j2
z < 0

ð12Þ

and for the isotropic cover:

e1c � j2
z < 0: ð13Þ

Using (11) and (12) and the definitions in (2), pure homo-
geneous hybrid waves with real jz can be captured, in terms of
h and /, by the following inequalities.

Figure 4. The change in the regions defining pure hybrid homogeneous waves for the anisotropic guide with all-positive diagonal tensor
elements as the angles of orientation are changed. Values used: e1s = 3.3856, e3s = 2.25, e1f = 4 and e3f = 2.7889. The blue areas show how
changing the value of / from / = 0� (the blue curves) to / = 90� (the red curves) has little effect on the range of h over which pure hybrid
homogeneous modes are possible.
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For the extraordinary mode:

e3s
e1s þ e3s � e1sð Þcos2/sin2h
e3s � e3s � e1sð Þsin2hsin2/

< j2
z

< e3f
e1f þ e3f � e1f

� �
cos2/sin2h

e3f � e3f � e1f

� �
sin2hsin2/

ð14Þ

and for the ordinary mode:

e1c < j2
z < e1f ð15Þ

For a substrate with parameters e1s = 3.3856, e3s = 2.25,
and a thin film guide with parameters e1f = 4, e3f = 2.7889,
the effect of changing the value of / is very small as can be
seen in Figure 4. Equations (11) and (12) give the blue curves
when / = 0�, and the red curves when / = 90�. Applying equa-
tions (14) and (15) produces the areas in blue from which it can
be seen that the change in / has little effect on the range of h
over which pure homogeneous modes occur.

Now the inequalities given in (14) and (15), permitting the
existence of various types of waves, are quite general. For a

Figure 5. The figure demonstrates the increasing range in h over which homogeneous waves occur in a hyperbolic film with e3f < 0, as /
increases towards a certain critical value. The dark blue areas show the regions over which pure hybrid homogeneous guided wave are
possible.

Figure 6. The graphs show the range of h over which homogeneous
waves can propagate for e1s = 3.3856, e3s = 2.25, e1f = 4,
|e3f| = 2.7889. The range extends from h = 0� up to each of the
curves in the figure. As / increases, there is little change when
e3f > 0. When e3f < 0, there is a rapid increase in the range until, at a
particular value / ¼ /crit, homogeneous waves can propagate at all
angles of h up to 90�. With the parameters given in the text
/crit ¼ 39:9� (shown by the dotted line). The upper right hand curve
shows the decreasing range of h when u increases beyond / ¼ /crit.

Figure 7. The dependence of the critical angle (/c in the figure) on
the value of e3f < 0, above which the wave number jz is no longer
limited by the value of e3f when this is negative. When e3f > 0 the
value of j2

z must be less than e3f for propagation of hybrid
homogeneous modes. If e3f < 0, there will be an angle /crit above
which there will be propagation of inhomogeneous modes.
The arrow in the diagram shows the critical angle when
e3f = �2.7889.
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hyperbolic film, where e3f < 0, the inequality on the right hand
side of (14) becomes

j2
z < e3f

�� �� e1f � e3f

�� ��þ e1f

� �
cos2/sin2h

e3f

�� ��� e3f

�� ��þ e1f

� �
sin2hsin2/

: ð16Þ

The profound effect of this change can be demonstrated, in
detail, by looking analytically at the changes in the regions
where the hybrid homogeneous, inhomogeneous and leaky
modes can exist. In order to illustrate the specific effect of a
negative value for e3f , the value e3f ¼ �2:7889 will be
selected, and the other permittivity values will remain the
same. The effect of this change in sign is shown in Figure 5,
and contrast greatly from the results shown in Figure 4.

From Figure 5, it is apparent that the pure hybrid homoge-
neous mode region depends on the point where the curves
given by

j2
z ¼ e3f

�� �� e1f � e3f

�� ��þ e1f

� �
cos2/sin2h

e3f

�� ��� e3f

�� ��þ e1f

� �
sin2hsin2/

ð16aÞ

for the different values of / cut the line j2
z ¼ e1s. These

points are given when h = h/, where, for e3f > 0,

h/ ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3f e1f � e1s

� �
e1f � e3f

� �
e3f cos2/f þ e1ssin2/f

� �
s

ð17Þ

which, as is apparent in Figure 4, decreases, but not very sig-
nificantly, as / changes from 0� to 90�. For the hyperbolic
case, for which e3f < 0, (17) can be written

h/ ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3f

�� �� e1f � e1s

� �
e3f

�� ��þ e1f

� �
e3f

�� ��cos2/f � e1ssin2/f

� �
s

: ð18Þ

There is a dramatic difference in the two cases. When
/ = 0�, the ranges of h over which pure hybrid homogeneous
waves propagate extend to

hmax ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1f � e1s

e1f � e3f

r
ðfor the case where e3f > 0Þ ð19Þ

and

hmax ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1f � e1s

e3f

�� ��þ e1f

s
ðfor the case where e3f < 0Þ ð20Þ

Comparing (19) and (20) it is clear that when e3f > 0� and
/ = 0�, so that the optic axis is in the xz-plane, the range for
the anisotropic guide is wider than that for the hyperbolic
guide. In the former case, as / increases from zero, it is easy
to see from (18) that for e3f > 0, as e3f

�� ��cos2/f ! e1ssin2/f ,
the range of h over which pure hybrid homogeneous modes can
exist decreases, but only by a relatively small amount (Figures
4 and 6). In contrast to this case, when e3f < 0 and / increases
from zero, the range increases rapidly until, as / approaches a
certain critical value /crit, given by

/crit ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3f

�� ��
e3f

�� ��þ e1f

s
; ð21Þ

pure hybrid homogeneous modes can exist for all values of
the angle h from 0� to 90� (Fgures 5 and 6). Note that as
/ approaches the value /crit, the change in the value of
hmax becomes very rapid so that very small changes in the
orientation of the optic axis has a profound effect, which
could have important consequences for the design and man-
ufacture of hyperbolic guides.

It is apparent from Figure 6 that for the case where e3f > 0,
the critical value of / has no meaning. It should be noted here
that the critical value also depends crucially on the value of e3f

as shown in Figure 7.
A second important major difference between the usual

anisotropic case and the hyperbolic case is that in the latter
modes can propagate at values of j2

z > e1f . However, in this
region the condition for the ordinary wave in equation (2),

Figure 8. Above critical angle /c, the normalised wave number jz is no longer limited by the value of e1f, but, in the regions above e1f and
below the solid curves, the modes are inhomogeneous. The blue areas are the regions where hybrid homogeneous modes occur. The figure
shows the decreasing range of h over which these modes are possible as / increases beyond the value of /c. The dashed line is the result for
the anisotropic substrate where as / changes the change in the graph is undetectable on the scale of the figure.
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namely, e1f � j2
z > 0 is no longer satisfied, and the waves are

inhomogeneous. These waves and the associated leaky waves
will be examined in detail in a future paper.

As the angle / increases beyond the value of /c, the range
of h over which pure hybrid homogeneous waves propagate
decreases again and is given by:

0 < h < sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3f

�� ��
e3f

�� ��þ e1f

� �
sin2/

s
ð22Þ

Figure 8 demonstrates this decreasing range of range of h
over which these modes propagate as / increases from a value
just above /c to the angle / = 90�.

The above analysis shows, for a particular data set, how
varying the position of the optic axis leads to interesting con-
clusions about the regions of existence of different forms of
waves. In particular it shows how varying the orientation of
the optic axis creates, or closes, windows of opportunity to
propagate the kind of waves that are certain to be part of
upcoming devices. In order for a meta-device to operate in a
homogeneous wave window it is important first of all to con-
duct an investigation into how the orientation angle / can be
made to influence the wave outcomes. The analysis also intro-
duces the existence of inhomogeneous waves for values of the
normalised wave-number that lie above the maximum possibil-
ities for the anisotropic guide with a permittivity tensor with all
positive elements.

4 Conclusions

As opposed to what is revealed in the limited literature on
optic axis orientations in metamaterials, the general theory
given here shows the advantages of orienting the optic axis
in carefully defined directions.

Through examining the dispersion relations for hyperbolic
waveguides, this paper emphasises that the orientation of the
optic axes is a significant determinant in the resulting optical
properties. In fact, whereas for conventional anisotropic wave-
guides, homogeneous propagating waves occur over a limited
range of the polar angle h, a range that varies only a little with
the azimuthal angle /, we have shown that for a hyperbolic
guide, a critical angle /c exists, at which value the guided
waves are homogeneous for all values of h between 0� and
90�. This has significant implications for meta-waveguide
designs in that it implies that, in the hyperbolic case, genera-
tion of propagating modes can be more easily achieved, and
the resulting structures are more tolerant to optic axis
misalignment.

The high sensitivity of the mode propagation constant to
azimuthal orientation of the optic axis could also be

transformative for meta-guided wave technology. Small exter-
nal perturbations, such as the application of mechanical pres-
sure, or temperature, can result in changes to the effective
orientation of the guide/substrate axes. These in turn, will
result in modes being cut off, or allowed to propagate, opening
up potential for sensor applications. Indeed, electro-optic con-
trol over the orientation of the optic axis in a hyperbolic guide
could lead the way to a communications technology based on
active mode control.

Also, we note the implication of our work for transforma-
tion designs that exploit the orientation of the optic axis of
anisotropic media, as described in [13]. In that work, pixels
of anisotropic media, where the orientation of the optic axis
alternated between pixels, were shown to produce an effective
transmission medium capable of a variety of transformation
devices, including a wave expander and a source shifter. Our
work suggests that a greater range of applications is possible
through the use of pixelated hyperbolic media.
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