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Abstract – As far as RADAR Cross Section (RCS) computations are concerned, metamaterial coating modeling
issues lead to cases of millions of unknowns for targets greater than the wavelength. For computational limiting
reasons, details of the coating cannot be meshed, even if they play a key role like in metamaterial design. Equivalent
boundary conditions or effective medium approximation are then necessary. In this paper we consider spheres and
cone-spheres with plasmonic coatings. Exact and approximated RCS computations are compared over a broad range
of microwave frequencies. In the last section, we eventually point out the relevance of full-metallic grooved coatings
in designing calibration objects exhibiting low RCS without the use of conventional RADAR Absorbing Materials.

Key words: Electromagnetic scattering, Radar cross-sections, Weston’s theorem, Electromagnetic modeling,
Homogenization.

1 Introduction

Metamaterials (MTM) are often introduced as media
exhibiting anomalous constitutive material parameters, such
as non-positive electric permittivity (e) and/or magnetic perme-
ability (l). It is perhaps more relevant to consider them first as
complex structures at the microscopic scale, that is to say in the
microwave domain, at a much smaller scale than the wave-
length of interest k. Typical MTM structures are indeed com-
posed of more or less complex-shape inclusions such as
spheres, wires, resonators or even holes (see [1] for a compre-
hensive introduction). As far as RADAR Cross Section (RCS)
computations are concerned, meshing these inclusions to fit
microscopic details would lead to unsolvable problems because
target dimensions are much greater than k. Consequently
equivalent boundary conditions or equivalent material parame-
ters are necessary, for instance for the design of a RAM coating
which would be made up of stacks of alternating thin layers of
a ferromagnetic metal and a dielectric material. Looking at
Figure 1 in Section 2, one can easily imagine the architecture
of such a coating; distances a and d would be of the order of a
few micrometers. One would also have to take into account the
finite electrical conductivity and the frequency-dependent mag-
netic permeability of the ferromagnetic material. For these rea-
sons, a MTM approximation would be more suitable.

Much work has been devoted to the computation of such
material parameters (pioneer works are [2–4] or [6], while
[7] can be seen as an interesting synthesis); they are known

as ‘‘effective medium theories’’ or ‘‘effective medium approx-
imations’’ (EMA) (see [8]). In most cases, modal expansions of
the electromagnetic fields (E, H) are carried out under some
periodicity assumptions and provide both equivalent dielectric
permittivity and magnetic permeability l. As for the existence
of plasmons in metallic structures, a precursor analysis can be
found in [9]. In this work we focus on the more recent results
introduced by Garcia-Vidal et al. [11] in relation with perfect
electrical conductors perforated with grooves; constitutive
parameters are then characterized by functions of plasmon
form, depending only on the geometry of the groove. More
precisely, it is shown in [11], and further investigated in [12],
that:

d PEC boundary conditions in the grooves forces the elec-
tric field E to vanish and the dielectric permittivity can be
deduced from extended Bruggeman theory [4];

d the magnetic permeability must be modified to balance
the effective index (here the product l) so as to ensure
a correct phase velocity in the grooves.

Our goal is to test these EMA results in RCS computations.
This means that we do not consider electromagnetic fields in
the vicinity of the perforated surface but only far field patterns
(RCS is equal to the square modulus of these fields up to a con-
stant). This must be seen as a global assessment, the object
under test being considered as a whole. Moreover exact 3-D
numerical tests are performed, rather than truncated analytical
expansions: all the modes are here taken into account provided*e-mail: Olivier.Vacus@cea.fr
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the discretization is fine enough. As we shall see, the EMA for
plasmonic coatings derived in [12] is confirmed by our numer-
ical approach based on far field comparisons.

Given any geometry, two different numerical models are
required. The first one is expected to provide a reference solu-
tion to the scattering problem. This requires a precise meshing
of the geometry of the coating of interest. The second one
ignores the fine details of the coating and is used to test differ-
ent EMA. Both models can run on a non-commercial code
named SHFC based on a formalism involving a strong cou-
pling of integral equations (method of moment) and finite vol-
ume elements to model PEC profiles and non PEC materials.
The code currently deals with 2-D axi-symmetrical (see [5])
objects which explains the fact that the CPU time consumption
remains low while producing accurate RCS even when the
mean size of the elements tends to a fraction of wavelength.

As is often the case with RCS issues, spheres have been
chosen as test object. Following the works described in [11]
and [12], two kinds of grooved spheres are considered in this
paper. Section 2 is devoted to a corrugated PEC sphere with
parallel grooves of non constant depth, while Section 3 deals
with radial grooves of constant depth. In both cases a short
RCS analysis is proposed. Then results obtained from EMA
are compared to exact RCS computations and discussed.
A direct application to RCS calibration target design is detailed
in Section 4. Conclusions are presented in Section 5. Prelimin-
ary results were reported in the conference papers [13, 20].
This article represents a comprehensive report of the final
outcomes of our investigations.

2 RCS for plasmonic coating with parallel
grooves

2.1 Geometrical description

In this section, we consider a textured PEC sphere as
shown in Figure 1. The structure can be regarded as an inner
PEC sphere of radius 96.5 mm coated with a periodically
grooved PEC spherical shell having a uniform thickness of
3 mm. Periodicity along z is d = 5 mm. The grooves have a
constant width a = 1 mm and a variable depth h which goes
from a minimum value of 3 mm to a maximum mean value
of 12.8 mm. Strictly speaking, since h is not constant, the over-
laying structure would be better referred to as pseudo-periodic
rather than periodic. The grooves are either empty or filled with
a dielectric of permittivity eg. The target is assumed to rest in a
standard air environment. In the following we shall be consid-
ering both TM-polarized (magnetic field H perpendicular to
rz-plane, see Figure 1) and TE-polarized (electric field E per-
pendicular to rz-plane) incident plane waves propagating along
the z-axis. RCS values are computed using the CEA home-
made code SHFC briefly described in Section 1.

2.2 Exact RCS computation

All the results in this paragraph are obtained without any
EMA. For this reason they are referred to below as exact
RCS computations.

Figure 2 shows the zero incidence monostatic RCS of the
textured PEC sphere compared to that of a plain PEC sphere
having the same overall radius (99.5 mm), for frequencies over
the range 100 MHz–42 GHz; the frequency step resolution is
regular and equal to 1 MHz. For zero incidence, due to rota-
tional symmetry, TM-RCS and TE-RCS are strictly identical.
A frequency domain of high RCS with a maximum located
at 30 GHz is readily noticed. This phenomenon is clearly iden-
tified as the onset of the 1st order scattering (msc =
c/2d = 30 GHz) at the Brillouin zone boundary. Extending
the computations up to 100 GHz would have revealed the
2nd and the 3rd order diffractions at 60 and 90 GHz respec-
tively. Such well-known diffractive effects are related to pho-
tonic band gaps and will not be discussed in this paper,
where we focus on plasmonic behavior and low RCS.

The first low RCS region has a minimum at 5:8 GHz,
which seems to correspond to the frequency location of a

Figure 1. Periodically grooved PEC sphere, with a the constant
width of the grooves and d the spatial period. The grooves run along
the u direction so that the target has a rotational symmetry with
respect to the z axis.

Figure 2. Exact RCS of the grooved sphere (red curve) compared
to that of a plain PEC sphere (black dashed curve).
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cavity waveguide mode inside the deepest groove:
xsp ’ pc=ð2h

ffiffiffiffiffi

eg
p

) with h = 12.8 mm and eg = 1 for empty
grooves. This frequency would also be that of spoof surface
plasmon polaritons on an equivalent flat PEC surface with reg-
ular 12.8 mm deep grooves [10–12]. Also, note that such an
attenuation has been experimentally investigated in [15] in
the case of a planar grooved metal structure.

The second low RCS region extends from 21 to 25 GHz,
with a minimum at 24.1 GHz, and seems to correspond to
the frequency location of cavity waveguide modes inside a
whole set of shallow grooves. Taking h = 3 mm, which is
the depth of the central groove, leads to msp = 25 GHz, while
taking h = 3.5 mm, which is the mean depth of the 10th
groove from the central position, leads to msp = 21.5 GHz. If
our assumptions are correct, we would expect msp to be reduced
by the factor 1=

ffiffiffiffiffi

eg
p

by merely filling the grooves with a
dielectric of permittivity eg. This characteristic behavior is con-
firmed by the numerical results contained in Figure 3. Besides,
as expected, it is clear on Figure 3 that the frequency location
of the 1st order scattering (Brillouin zone) does not depend on
the refractive index n ¼ ffiffiffiffiffi

eg
p

of the material filling the
grooves.

2.3 EMA in RCS computation

We now revert to the grooved PEC coating in Figure 1,
looking for an adequate EMA.

A first approximation, denoted EMA0, is given by a
straightforward homogenization, particularly with regard to lr

and lu. Using the extended Bruggeman theory (see [4] or
[7]) leads to the set of characteristics: ez = 5, er = eu = –1,
lr = lu = lz = 1. They define a first equivalent anisotropic
coating which is modeled with finite volume elements in RCS
computations. In practice, 1012 stands for 1 in our input data.

A second approximation, denoted EMAl, follows the argu-
ments developed in [11] for periodically textured PEC bodies
or in [14] for lamellar composite materials. It reads: ez = 5,
er = eu = –1, lr = lu = 0.2, lz = 1. These parameters define

a new anisotropic coating. The distinctive feature of this model
is related to the fact that diamagnetism has been introduced
along the r and the u directions. Thus the products ezlu and
ezlr remain equal to 1 ensuring that electromagnetic waves
(Hr, Hu, Ez) propagate along the empty grooves at the speed
of light.

RCS results are contained in Figure 4. They show that the
3 mm grooved PEC coating is rather well-described by EMAl
(red curve), while EMA0 leads to an erroneous estimate of the
RCS (blue curve): high RCS and low RCS zones are shifted
down by a factor close to 2 due to an underestimated speed
of propagation.

For off-axial incidences, TM-RCS and TE-RCS are no
longer identical, which is in the nature of things. It is apparent
from Figure 5 that the metamaterial approximation EMAl at
2 GHz works very satisfactorily from the angular robustness
standpoint. This low frequency has been chosen to ensure that
the periodic step of 5 mm is small compared to the wavelength
of 15 cm.

The results are less convincing at higher frequencies, as
shown in Figure 6 with TM-RCS and TE-RCS at 10 GHz.
More precisely, a strong concordance is observed everywhere
except for TM polarization around the direction normal to
the main axis of the grooved sphere (z-axis). In this case the
induced current J = H · n (where n is the outgoing normal
unit vector) is normal to the grooves and the impact on the
RCS is maximal. Every groove can be seen as a low bright
point and the total RCS as the sum of a collection of different
contributors since the depth of the grooves is varying along the
current distribution. The observed differences can thus be
explained by this non-constant depth and a slightly perturbed
balance in the sum of contributions under the EMAl assump-
tion. Moreover, at 10 GHz, the periodic step of 5 mm is much
closer to the wavelength which is now equal to 3 cm.

To clarify those discrepancies, a second geometry of corru-
gation sphere is examined in the next section, with grooves of
constant depth running along the surface.

Figure 3. Exact RCS of the grooved sphere showing the influence
of the permittivity of the material filling the grooves. Red curve:
eg = 1, blue curve: eg = 1.2, green curve: eg = 1.3.

Figure 4. Monostatic RCS at zero incidence. Green curve: exact
computation for the periodically grooved PEC sphere. Blue curve:
EMA0 or ez = 5, er = eu = –1, lr = lu = lz = 1. Red curve:
EMAl or ez = 5, er = eu = –1, lr = lu = 0.2, lz = 1.
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3 RCS for plasmonic coating with radial
grooves

3.1 Geometrical description

In this section, we consider a second textured PEC sphere
as shown in Figure 7. With respect to the preceding grooved
sphere, the structure has been modified in order to ensure a
constant groove depth over the entire surface, via a radial dis-
tribution (a similar geometry is discussed in [12] for a PEC
cylinder). Except for tapering effects, the elementary dimen-
sions are comparable to those of the previous case: bottom
width and depth are respectively equal to 1 and 3 mm, and
the periodic step is equal to 5 mm.

3.2 EMA in RCS computation

The same approximations as in the previous section are
tested on this second grooved sphere, in the sense that the input
permittivity and permeability tensors remain apparently
unchanged: eh = 5, er = eu = –1, lr = lu = lh = 1 for
EMA0 and eh = 5, er = eu = –1, lr = lu = 0.2, lh = 1 for
EMAl. However the new coordinates are now spherical in order
to take into account the fact that the grooves are radial: the

permittivity is equal to 5 along the direction perpendicular to
the grooves (uh), while the waves (Hr, Eh) or (Eh, Hu) must still
propagate along the grooves at the speed of light.

Figure 5. Monostatic angular RCS at 2 GHz for TE (top) and TM
(bottom) polarizations: green curve: exact computation; red curve:
EMAl computation; blue curve: EMA0 computation.

Figure 6. Monostatic angular RCS at 10 GHz for TE (top) and TM
(bottom) polarizations: green curve: exact computation; red curve:
EMAl computation; blue curve: EMA0 computation.

Figure 7. Second grooved PEC sphere. A rotational symmetry is
conserved but the grooves are here radial.
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Monostatic RCS results at zero incidence is perfectly mod-
eled by EMAl over a broad range of frequencies (100 MHz to
15 GHz, see Figure 8), whereas EMA0 leads to erroneous
results, even for low frequencies around 2 GHz.

This conclusion is confirmed by considering monostatic
RCS as a function of incidence. As in the previous section, per-
fect concordance is observed at 2 GHz on Figure 9 between
exact and EMAl computations, while EMA0 turns out to be
totally unsatisfactory. Moreover, the same comments hold here
at 10 GHz (see Fig. 10), as opposed to the less convincing sit-
uation depicted in Figure 6, pertaining to the first PEC grooved
sphere.

So, as suggested in the previous section, the differences
observed in Figure 6 between exact and EMAl computations
are probably due to the varying depth of the grooves rather than
to the small wavelength at 10 GHz. The successful test in the
case of the constant depth radially distributed grooves seems to
validate this assumption.

3.3 RCS analysis

Monostatic RCS results presented in Figure 8 are obtained
with EMA0 and EMAl approximations. For moderate fre-
quencies (up to 2 GHz) they are rather similar, while for higher
frequencies they exhibit a significant discrepancy. This calls for
comment as both approximations lie roughly on the same kind
of anisotropic tensors and a better agreement could have been

Figure 8. Monostatic RCS at zero incidence, from 100 MHz up to
15 GHz.

Figure 9. Monostatic angular RCS at 2 GHz for TE (top) and TM
(bottom) polarizations: green curve: exact computation; red curve:
EMAl computation; blue curve: EMA0 computation.

Figure 10. Monostatic angular RCS at 10 GHz for TE (top) and
TM (bottom) polarizations: green curve: exact computation; red
curve: EMAl computation; blue curve: EMA0 computation.
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expected. In particular, the very low levels of RCS obtained
without any losses (e.g. less than �30 dBm2 around 11 GHz
for EMA0) need an explanation.

This can be done using a standard surface impedance
model. Let us consider a plane wave (k, E, H) defined in a
spherical coordinate system (er, eh, eu): at null incidence k is
parallel to er. The two terms of the anisotropic impedance ten-
sor are denoted Z1 and Z2; they respectively satisfy the follow-
ing relationships Eh = Z1 Hu and Eu = Z2 Hh.

Computing Z2 is straightforward. Due to the PEC condi-
tions on the grooves, we have seen that eu = –1 which yields
Eu = 0 and Z2 = 0.

For impedance Z1 mode (k, Eh, Hu) must be considered. It
is defined by finite value coefficients, respectively eh = 5 and
lu = 1 for EMA0 and eh = 5 and lu = 0.2 for EMAl. This
leads for EMA0 to Z1 ¼ � j

ffiffi

5
p tan

ffiffiffi

5
p

2pf
c e

� �

, while for EMAl
we have Z1 ¼ � j

5 tan 2pf
c e

� �

. It turns out that Z1 tends to infin-
ity when the tangent argument tends to ðk þ 1

2Þp. The thickness
layer being 3 mm, this happens the first time (k = 0) respec-
tively at f = 11.2 GHz for EMA0 and f = 25 GHz for EMAl
(see Sect. 4 for multiple frequency compensation). Assump-
tions of Weston’s theorem are then fulfilled (see [16] for the
reference theorem and [17] for the anisotropic case):

d the object is symmetrical,
d impedance coefficients are reciprocal quantities:

Z1 Z2 ¼ 1:

This explains why the RCS vanishes. The first frequency
can be readily checked on Figure 8 for EMA0. As for EMAl,
the RCS dip expected around 25 GHz can in fact be observed
on extended computations of Figure 8 up to 30 GHz.

3.4 Non spherical objects

To check the validity of the EMA, we finally consider a
cone-sphere, of main axis (0x) and defined by the three follow-
ing parameters: a = 12.5 degrees the half-angle at the tip,
r = 3 mm the small radius of the spherical part on the tip;
R = 0.7 m, the large radius of the spherical part on the bottom.
Junctions of the conical part and the two spherical parts are
chosen to be tangent. The overall dimensions are approxi-
mately 4 · 1.4 · 1.4 m.

Anisotropic parameters are now introduced to describe a
3 mm layer surrounding the cone-sphere. They are defined in
a local coordinate system (un, us, uu): un is the unit outgoing

normal vector; us is a unit tangential vector; uu is a unit vector
such that (un, us, uu) is a direct orthonormal system. Thus the
coordinate system can be chosen to be exactly the spherical
coordinate system on the tip (small sphere) and the bottom
(large sphere) of the cone-sphere. Following the computations
performed in the spherical case, the electric permittivity is
chosen to be a tensor equal to:

e ¼
�1012 0 0

0 5 0

0 0 �1012

2

6

4

3

7

5

;

while the magnetic permeability is chosen to be a tensor
equal to:

lS ¼
1 0 0

0 1 0

0 0 1

2

6

4

3

7

5

or lp ¼
0:2 0 0

0 1 0

0 0 0:2

2

6

4

3

7

5

:

RCS results are contained in Figure 12. The green curve
(loose dots) refers to the exact RCS computation of a PEC
cone-sphere derived from Figure 11, comprising an additional
3 mm PEC layer with periodic grooves of exactly the same
nature as those represented on the sphere of Figure 7. The
results demonstrate once again that EMAl (red curve) is
totally relevant on a broad band of frequencies. On the contrary
EMA0 leads to a strongly inaccurate RCS (blue curve), with an
error up to several tens of dB. These conclusions are confirmed
by considering monostatic RCS as a function of incidence (see
Fig. 13).

4 Application to RCS calibration targets

A direct application of plasmonic coatings in the microwave
domain is the design of calibration targets for RCS measure-
ments. In anechoic chambers, the quality of RCS measurements
is limited by couplings with the walls. New calibration targets

Figure 12. Monostatic RCS at zero incidence. Green curve: exact
computation for the periodically grooved PEC cone-sphere; blue
curve: EMA0 computation; red curve: EMAl computation.

Figure 11. Definition of a cone-sphere with a smooth tip.
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are proposed to assess these couplings. The idea is to get null
monostatic RADAR Cross Section at some desired frequency
by designing suitable plasmonic coatings.

For the sake of simplicity, the following analysis is limited
to spheres, but it is clear that more general 3-D shapes could as
well be considered.

4.1 RCS calibration targets

RCS measurements simply amount to backscattering coef-
ficient (Sd) measurements: RCS ¼ 4pjSdj2. In indoor anechoic
chambers, as recalled above, it is first desirable to reduce
reflections on walls or couplings by means of background sub-
traction, done by performing an empty room measurement.
The next step is a standard calibration using a target with a pre-
cisely known RCS. Finally, in order to get accurate results, it
turns out that 3 measurements are necessary: ST for the target
under test, SC for the calibration target and S0 without any
target (empty room):

Sd ¼ S0
C

ST � S0

SC � S0
:

Here S0
C denotes the theoretical RCS value of the calibration

target, whose precise knowledge is obviously crucial. Any error
on S0

C yields the same error on the measurement. This explains
why RAM are prohibited, for they give rise to unacceptable
uncertainty. On the contrary, full-metallic targets are highly reli-
able; hence the interest of grooved plasmonic coatings as
described in this paper: they offer a simple way to produce
objects with RCS similar to those obtained with RAM, but
without any specific constitutive parameters to control.

4.2 A plasmonic X-band calibration sphere

Definition parameters as introduced in Section 2 have been
optimized using EMAl approximation in order to get null RCS
in X-band and K-band. Sphere radius is now 298.5 mm, as
indicated in Figure 14. Radial periodicity is d = 3 mm. The
grooves have a constant width a = 0.6 mm and a constant
depth 9 mm; the ratio a/d thus remains unchanged. Following
indications of Section 3.3, expected frequencies such that
Z1 Z2 = 1 are given in Table 1.

A fine mesh is created to take into account the exact defini-
tion of the grooved sphere. Exact monostatic RCS computations
are then performed with SHFC code from 100 MHz up to the
Brillouin zone around 50 GHz. Results are depicted in Figure 15.

As expected, three very low RCS are observed, up to 20 dB
below the RCS level of a regular plain sphere of the same
radius; they are indicated by vertical red dashed lines.

Figure 14. Definition of a calibration grooved sphere with null
RCS in X-band and K-band.

Table 1. Comparison of predicted frequencies
when 2pf

c e! k þ 1
2

� �

p
� �

and observed frequencies from exact
RCS computations.

k Predicted frequencies
EMAl calculations (GHz)

Observed frequencies
RCS calculations (GHz)

Relative
shift (%)

0 8.33 8.12 2.52
1 24.99 24.37 2.48
2 41.65 40.62 2.47

Figure 13. Monostatic angular RCS at 6 GHz for TE (top) and TM
(bottom) polarizations: green curve: exact computation; blue curve:
EMA0 computation; red curve: EMAl computation.
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Note that these frequencies are slightly different from those
predicted using EMAl approximation (see Table 1). It turns
out that the electromagnetic waves do not propagate rigorously
at the speed of light in our computations, but a little bit slower.
Here it must be underlined that the relative shift is constant for
the three frequencies. This would not have been the case if the
shift had been caused by numerical dispersion. Indeed all the
computations rely on the same meshing and the number of
points per wavelength is five time greater at 8 GHz than at
40 GHz.

Taking this slight shift into account and in order to improve
the accuracy of EMAl approximation, a second-order

correction might be brought to the diamagnetic permeability:
lr = lu = 0.21 might be preferred to ensure a better compari-
son between approximate and exact computations. This correc-
tion is not essential in our work, where exact computations
remain possible as long as the target remains axi-symmetrical.

For frequencies immediately below the probing frequen-
cies, that is to say around 6, 21 and 38 GHz, RCS is strongly
oscillating, the mean value being equal to the RCS of the reg-
ular sphere. This can be properly established by using classical
RADAR imaging techniques like range profiles. It is clear on
Figure 16 that the specular contributor remains constant over
the whole range. The only really low RCS levels are observed
at the three expected frequencies (horizontal red dashed lines).
At these frequencies, the monostatic RCS being negligible,
standard measurements would allow to evaluate how strong
is the coupling of the target with the anechoic chamber.

5 Conclusion

RCS computations represent an interesting approach to
probe the behavior of plasmonic-like coatings in the MHz-
GHz spectrum. They provide full-physics results, provided that
the meshing is fine enough, averaged in the far field sense.
For frequencies belonging to the range 100 MHz–12 GHz, the
metamaterial effective medium approximation developed in
[11] are definitely confirmed by our computations. They are thus
entirely relevant as far as RCS is concerned and could be used
with confidence for real 3-D issues (not necessarily axi-symmet-
rical objects). They have already been used in the design of new
RCS calibration targets, plasmonic-like coatings being an inter-
esting alternative to RAM. They have also provided reference
results in computational RCS workshops [18, 19].
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