Open Access
Issue
EPJ Applied Metamaterials
Volume 4, 2017
Article Number 3
Number of page(s) 13
DOI http://dx.doi.org/10.1051/epjam/2016014
Published online 13 January 2017
  1. S. Tibuleac, R. Magnusson, T.A. Maldonado, P.P. Young, T.R. Holzheimer, Dielectric frequency-selective structures incorporating waveguide gratings, IEEE Trans. Microwave Theory Tech. 48 (2000) 553–561. [CrossRef]
  2. S.S. Wang, R. Magnusson, Design of waveguide grating filters with symmetrical line shapes and low sidebands, Opt. Lett. 19 (1994) 919–921. [CrossRef]
  3. S.M. Norton, T. Erdogan, G.M. Morris, Coupled mode theory of resonant-grating filters, J. Opt. Soc. Am. A 14 (1997) 629–639. [CrossRef]
  4. J. Turunen, F. Wyrowski (Eds.), Diffractive optics for industrial and commercial applications, Chap. 12, Akademie, Berlin, 1997.
  5. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburr, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334 (2011) 333–337. [CrossRef] [PubMed]
  6. X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband light bending with plasmonic nanoantennas, Science 335 (2011) 427. [CrossRef] [PubMed]
  7. C. Argyropoulos, G. D’Aguanno, N. Mattiucci, N. Akozbek, M.J. Bloemer, A. Alù, Matching and funneling light at the plasmonic Brewster angle, Phys. Rev. B 85 (2012) 024304. [CrossRef]
  8. F. Monticone, N.M. Estakhri, A. Alù, Full control of nanoscale optical transmission with a composite metascreen, Phys. Rev. Lett. 110 (2013) 203903. [CrossRef]
  9. N.M. Estakhri, C. Argyropoulos, A. Alù, Graded metascreens to enable a new degree of nanoscale light management, Phil. Trans. R. Soc. A 373 (2015) 20140351. [CrossRef]
  10. Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N.M. Jokerst, D.R. Smith, Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths, Optics Express 19 (2011) 24411–24423. [CrossRef]
  11. Y. Cui, et al., Plasmonic and metamaterial structures as electromagnetic absorbers, Laser Photon. Rev. 8 (2014) 495–520. [CrossRef]
  12. A.A. Darweesh, S.J. Bauman, J.B. Herzog, Improved optical enhancement using double-width plasmonic gratings with nanogaps, Photon. Research 4 (2016) 173–180. [CrossRef]
  13. S. Jahani, Z. Jacob, All-dielectric metamaterials, Nature Nanotechnol. 11 (2016) 23–36. [CrossRef]
  14. D. Ohana, U. Levy, Mode conversion based on dielectric metamaterial in silicon, Optics Express 22 (2014) 27617–27631. [CrossRef]
  15. L. Zhu, J. Kapraun, J. Ferrara, C.J. Chang-Hasnain, Flexible photonic metastructures for tunable coloration, Optica 2 (2015) 255–258. [CrossRef]
  16. S. Miyanaga, T. Akasura, Intensity profiles of outgoing beams from tapered grating couplers, Radio Sci. 17 (1982) 135–143. [CrossRef]
  17. M.G. Moharam, E.B. Grann, D.A. Pommet, T.K. Gaylord, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, J. Opt. Soc. Am. A 12 (1995) 1068–1076. [CrossRef]
  18. R.S. Chu, J.A. Kong, Modal theory of spatially periodic media, IEEE Trans. Microwave Theory Tech. MTT-25 (1977) 18–24. [CrossRef]
  19. M.R. Zunoubi, H.A. Kalhor, Diffraction of electromagnetic waves by periodic arrays of rectangular cylinders, J. Opt. Soc. Am. A 23 (2006) 306–313. [CrossRef]
  20. Y. Nakata, M. Koshiba, Boundary-element analysis of plane-wave diffraction from groove-type dielectric and metallic gratings, J. Opt. Soc. Am. A 7 (1990) 1494–1502. [CrossRef]
  21. G. Athanasoulias, N.K. Uzunoglu, An accurate and efficient entire-domain basis Galerkin’s method for the integral equation analysis of integrated rectangular dielectric waveguides, IEEE Trans. Microwave Theory Tech. 43 (1995) 2794–2804. [CrossRef]
  22. N.L. Tsitsas, N.K. Uzunoglu, D.I. Kaklamani, Diffraction of plane waves incident on a grated dielectric slab: An entire domain integral equation analysis, Radio Sci. 42 (2007) RS6S22. [CrossRef]
  23. N.L. Tsitsas, D.I. Kaklamani, N.K. Uzunoglu, Rigorous integral equation analysis of nonsymmetric coupled grating slab waveguides, J. Opt. Soc. Am. A 23 (2006) 2888–2905. [CrossRef]
  24. M. Weber, D.L. Mills, Interaction of electromagnetic waves with periodic gratings: Enhanced fields and the reflectivity, Phys. Rev. B 27 (1983) 2698–2709. [CrossRef]
  25. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part I, McGraw-Hill, Tokyo, 1953.
  26. R.E. Collin, Field theory of guided waves, IEEE Press, New York, 1991.
  27. D.M. Pai, K.A. Awada, Analysis of dielectric gratings of arbitrary profiles and thicknesses, J. Opt. Soc. Am. A 8 (1991) 755–762. [CrossRef]
  28. R.H. Morf, Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings, J. Opt. Soc. Am. A 12 (1995) 1043–1056. [CrossRef]
  29. H.L. Bertoni, L.-H.S. Cheo, T. Tamir, Frequency-selective reflection and transmission by a periodic dielectric layer, IEEE Trans. Antennas Propagat. 37 (1989) 78–83. [CrossRef]
  30. M.G. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials, Phys. Rev. Lett. 97 (2006) 157403. [CrossRef] [PubMed]
  31. A. Alù, M.G. Silveirinha, A. Salandrino, N. Engheta, Epsilon near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern, Phys. Rev. B 75 (2007) 155410. [CrossRef]
  32. R. Liu, Q. Cheng, T. Hand, J.J. Mock, T.J. Cui, S.A. Cummer, D.R. Smith, Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies, Phys. Rev. Lett. 100 (2008) 023903. [CrossRef] [PubMed]
  33. A. Coves, B. Gimeno, J. Gil, M.V. Andrés, A.A. San Blas, V.E. Boria, Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method, IEEE Trans. Antennas Propagat. 52 (2004) 2091–2099. [CrossRef]
  34. A. Sommerfeld, Partial differential equations in physics, Academic Press, New York, 1949.
  35. C.T. Tai, Dyadic Green’s functions in electromagnetic theory. 2nd ed., IEEE Press, New York, 1994.