Advanced Metamaterials in Microwaves, Optics and Mechanics
Open Access
Issue
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
Article Number 15
Number of page(s) 12
DOI https://doi.org/10.1051/epjam/2015019
Published online 08 February 2016
  1. C.M. Soukoulis, M. Kafesaki, E.N. Economou, Negative index materials: new frontiers in optics, Adv. Mat. 18 (2006) 1941–1952. [CrossRef]
  2. Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology, Chem. Soc. Rev. 40 (2011) 2494–2507. [CrossRef] [PubMed]
  3. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10 (1968) 509–514. [CrossRef]
  4. N. Engheta, Pursuing near-zero response, Science 340 (2013) 286–287. [CrossRef]
  5. M.G. Silveirinha, N. Engheta, Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using epsilon near-zero metamaterials, Phys. Rev. B 76 (2007) 245109. [CrossRef]
  6. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials, Nat. Photonics 7 (2013) 10. [CrossRef]
  7. N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11 (2012) 917–924. [CrossRef]
  8. A. Sihvola, Metamaterials in electromagnetics, Metamaterials 1 (2007) 2–11. [CrossRef]
  9. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G.V. Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer, Science 325 (2009) 1513–1515. [CrossRef] [PubMed]
  10. J.J.D.D. Jong, L.N. Lucas, R.M. Kellogg, J.H.V. Esch, B.L. Feringa, Reversible optical transcription of supramolecular chirality into molecular chirality, Science 304 (2004) 278–281. [CrossRef]
  11. M. Wegener, S. Linden, Giving light yet another new twist, Physics 2 (2009) 3–6. [CrossRef]
  12. S. Zhang, J. Zhou, Y. Park, J. Rho, R. Singh, S. Nam, A.K. Azad, H. Chen, X. Yin, A.J. Taylor, X. Zhang, Photoinduced handedness switching in terahertz chiral metamolecules, Nat. Commun. 3 (2012) 3–6.
  13. J. Zhou, D.R. Chowdhury, R. Zhao, A.K. Azad, H. Chen, C.M. Soukoulis, A.J. Taylor, J.F. O’Hara, Terahertz chiral metamaterials with giant and dynamically tunable optical activity, Phys. Rev. B 86 (2012) 035448. [CrossRef]
  14. B. Wang, J. Zhou, T. Koschny, C.M. Soukoulis, Nonplanar chiral metamaterials with negative index, Appl. Phys. Lett. 94 (2009) 151112. [CrossRef]
  15. Z. Li, M. Mutlu, E. Ozbay, From optical activity and negative refractive index to asymmetric transmission, J. Opt. 15 (2013) 023001. [CrossRef]
  16. B.N. Wang, J.F. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Chiral metamaterials: simulations and experiments, J. Opt. A: Pure Appl. Opt. 11 (2009) 114003. [CrossRef]
  17. K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation, J. Am. Chem. Soc. 116 (1994) 6664–6676. [CrossRef]
  18. N. Koumura, R.W.J. Zijlstra, R.A.V. Delden, N. Harada, B.L. Feringa, Light-driven monodirectional molecular rotor, Nature 401 (1999) 152–155. [CrossRef] [PubMed]
  19. R. Zhao, J. Zhou, T. Koschny, E.N. Economou, C.M. Soukoulis, Repulsive Casimir force in chiral metamaterials, Phys. Rev. Lett. 103 (2009) 103602. [CrossRef] [PubMed]
  20. R. Zhao, T. Koschny, E.N. Economou, C.M. Soukoulis, Repulsive Casimir forces with finite-thickness slabs, Phys. Rev. B 83 (2011) 075108. [CrossRef]
  21. G. Kenanakis, C.M. Soukoulis, E.N. Economou, Casimir forces of metallic microstructures into cavities, Phys. Rev. B 92 (2015) 075430. [CrossRef]
  22. J.B. Pendry, A chiral route to negative refraction, Science 306 (2004) 1353–1355. [CrossRef] [PubMed]
  23. S. Tretyakov, A. Sihvola, L. Jylha, Bi-layer cross chiral structure with strong optical activity and negative index, Photonics Nanostruct. Fundam. Appl. 3 (2005) 107–115. [CrossRef]
  24. G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs, Opt. Mater. Express 2 (2012) 1702–1712. [CrossRef]
  25. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nat. Photonics 5 (2011) 523–530.
  26. Y. Huang, Z. Yao, Q. Wang, F. Hu, X. Xu, Coupling Tai Chi chiral metamaterials with strong optical activity in terahertz region, Plasmonics 10 (2015) 1005–1011. [CrossRef]
  27. E.V. Naumova, V.Y. Prinz, S.V. Golod, V.A. Seleznev, R.A. Soots, V.V. Kubarev, Manufacturing chiral electromagnetic metamaterials by directional rolling of strained heterofilms, J. Opt. A: Pure Appl. Opt. 11 (2009) 074010. [CrossRef]
  28. N. Wongkasem, A. Akyurtlu, K.A. Marx, D. Qi, L. Jin, W.D. Goodhue, Development of chiral negative refractive index metamaterials for the terahertz frequency regime, IEEE Trans. Antennas Propag. 55 (2007) 3052–3062. [CrossRef]
  29. E. Plum, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, Y. Chen, Giant optical gyrotropy due to electromagnetic coupling, Appl. Phys. Lett. 90 (2007) 223113. [CrossRef]
  30. A. Sonsilphong, P. Gutruf, W. Withayachumnankul, D. Abbott, M. Bhaskaran, S. Sriram, N. Wongkasem, Flexible bi-layer terahertz chiral metamaterials, J. Opt. 17 (2015) 085101. [CrossRef]
  31. M. Kafesaki, N.H. Shen, S. Tzortzakis, C.M. Soukoulis, Optically switchable and tunable terahertz metamaterials through photoconductivity, J. Opt. 14 (2012) 114008. [CrossRef]
  32. G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Optically controllable THz chiral metamaterials, Opt. Express 22 (2014) 12149–12159. [CrossRef]
  33. N.H. Shen, M. Massaouti, M. Gokkavas, J.M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C.M. Soukoulis, Optically implemented broadband blueshift switch in the terahertz regime, Phys. Rev. Lett. 106 (2011) 037403. [CrossRef] [PubMed]
  34. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Three-dimensional infrared metamaterial with asymmetric transmission, ACS Photonics 2 (2015) 287–294. [CrossRef]
  35. K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, M. Farsari, 3D conducting nanostructures fabricated using direct laser writing, Opt. Mater. Express 1 (2011) 586–597. [CrossRef]
  36. N. Vasilantonakis, K. Terzaki, I. Sakellari, V. Purlys, D. Gray, C.M. Soukoulis, M. Vamvakaki, M. Kafesaki, M. Farsari, Three-dimensional metallic photonic crystals with optical bandgaps, Adv. Mater. 24 (2012) 1101–1105. [CrossRef]
  37. M. Farsari, B.N. Chichkov, Two-photon fabrication, Nature Photon. 3 (2009) 450–452. [CrossRef]
  38. M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, Ultrafast laser nanostructuring of photopolymers: a decade of advances, Phys. Rep. 2013 (2013) 1–31. [CrossRef]
  39. N. Liu, H. Giessen, Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling, Opt. Express 16 (2008) 21233–21238. [CrossRef]
  40. R. Zhao, T. Koschny, E.N. Economou, C.M. Soukoulis, Comparison of chiral metamaterial designs for repulsive Casimir force, Phys. Rev. B 81 (2010) 235126. [CrossRef]
  41. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.B. Alici, E. Colak, H. Caglayan, E. Ozbay, C.M. Soukoulis, Chiral metamaterials with negative refractive index based on four “U” split ring resonators, Appl. Phys. Lett. 97 (2010) 081901. [CrossRef]
  42. W.-H. Sun, Y.-J. Bao, M. Wang, R.-W. Peng, C. Sun, X. Lu, J. Shao, Z.-F. Li, N.-B. Ming, Construction of a chiral metamaterial with a U-shaped resonator assembly, Phys. Rev. B 81 (2010) 075119. [CrossRef]
  43. M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, M. Wegener, Twisted split-ring-resonator photonic metamaterial with huge optical activity, Opt. Lett. 35 (2010) 1593–1595. [CrossRef]
  44. Y.-P. Jia, Y.-L. Zhang, X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, X.-M. Duan, Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators, Physica E 74 (2015) 659–664. [CrossRef]
  45. R. Zhao, L. Zhang, J. Zhou, T. Koschny, C.M. Soukoulis, Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index, Phys. Rev. B 83 (2011) 035105. [CrossRef]
  46. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index due to chirality, Phys. Rev. B 79 (2009) 121104(R). [CrossRef]
  47. M. Decker, M. Ruther, C.E. Kriegler, J. Zhou, C.M. Soukoulis, S. Linden, M. Wegener, Strong optical activity from twisted-cross photonic metamaterials, Opt. Lett. 34 (2009) 2501–2503. [CrossRef]
  48. C. Menzel, C. Rockstuhl, F. Lederer, Advanced Jones calculus for the classification of periodic metamaterials, Phys. Rev. A 82 (2010) 053811. [CrossRef]
  49. J. Gu, R. Singh, A.K. Azad, J. Han, A.J. Taylor, J.F. O’Hara, W. Zhang, An active hybrid plasmonic metamaterial, Opt. Mater. Express 2 (2012) 31–37. [CrossRef]
  50. H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials, Nat. Photonics 2 (2008) 295–298. [CrossRef]
  51. M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C.M. Soukoulis, E.N. Economou, Left-handed metamaterials: the fishnet structure and its variations, Phys. Rev. B 75 (2007) 235114. [CrossRef]
  52. A.M. Mahmoud, N. Engheta, Wave-matter interactions in epsilon-and-mu-near-zero structures, Nature Commun. 5 (2014) 5638. [CrossRef]
  53. V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, A.V. Rogacheva, Y. Chen, N.I. Zheludev, Asymmetric propagation of electromagnetic waves through a planar chiral structure, Phys. Rev. Lett. 97 (2006) 167401. [CrossRef]
  54. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, F. Lederer, Asymmetric transmission of linearly polarized light at optical metamaterials, Phys. Rev. Lett. 104 (2010) 253902. [CrossRef]
  55. A.S. Schwanecke, V.A. Fedotov, V.V. Khardikov, S.L. Prosvirnin, Y. Chen, N.I. Zheludev, Nanostructured metal film with asymmetric optical transmission, Nano Lett. 8 (2008) 2940–2943. [CrossRef] [PubMed]
  56. M. Mutlu, A.E. Akosman, A.E. Serebryannikov, E. Ozbay, Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial, Opt. Express 19 (2011) 14290–14299. [CrossRef]
  57. M. Kang, J. Chen, H.-X. Cui, Y. Li, H.-T. Wang, Asymmetric transmission for linearly polarized electromagnetic radiation, Opt. Express 19 (2011) 8347–8356. [CrossRef]
  58. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin wire structures, J. Phys.: Condens. Matter 10 (1998) 4785–4809. [CrossRef]
  59. J. Pendry, A. Holden, D. Robbins, W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech. 47 (1999) 2075–2084. [CrossRef]
  60. Z. Li, M. Mutlu, E. Ozbay, Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials, J. Phys. D: Appl. Phys. 47 (2014) 075107. [CrossRef]
  61. C.H. Papas, Theory of electromagnetic wave propagation, McGraw-Hill, New York, 1965.
  62. S. Bassiri, C.H. Papas, N. Engheta, Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab, J. Opt. Soc. Am. A 5 (1988) 1450–1459. [CrossRef]