Advanced Metamaterials in Microwaves, Optics and Mechanics
Open Access
Issue
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
Article Number 13
Number of page(s) 14
DOI http://dx.doi.org/10.1051/epjam/2015013
Published online 26 January 2016
  1. M. Schaeffer, M. Ruzzene, Wave propagation in multistable magneto-elastic lattices, International Journal of Solids and Structures 56–57 (2014) 78–95.
  2. M. Schaeffer, M. Ruzzene, Wave propagation in reconfigurable magneto-elastic kagome lattice structures, Journal of Applied Physics 117 (2015) 194903. [CrossRef]
  3. P. Deymier, Acoustic Metamaterials and Phononic Crystals, Springer Series in Solid-State Sciences, Springer, New York, 2013. [CrossRef]
  4. L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, Cambridge university press, Cambridge, UK, 1999.
  5. M.I. Hussein, M.J. Leamy, M. Ruzzene, Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook, Applied Mechanics Reviews 66 (2014) 040802. [CrossRef]
  6. M.-H. Lu, L. Feng, Y.-F. Chen, Phononic crystals and acoustic metamaterials, Materials Today 12 (2009) 34–42. [CrossRef]
  7. T.A. Schaedler, A.J. Jacobsen, W.B. Carter, Toward lighter, stiffer materials, Science 341 (2013) 1181–1182. [CrossRef]
  8. H.N. Wadley, Multifunctional periodic cellular metals, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364 (2006) 31–68. [CrossRef]
  9. M. Born, K. Huang, Dynamical theory of crystal lattices, Clarendon Press, Oxford, 1954.
  10. S. Gonella, M. Ruzzene, Homogenization and equivalent in-plane properties of two-dimensional periodic lattices, International Journal of Solids and Structures 45 (2008) 2897–2915. [CrossRef]
  11. A.A. Maradudin, E.W. Montroll, G.H. Weiss, I. Ipatova, Theory of lattice dynamics in the harmonic approximation, Vol. 12, Academic press, New York, 1963.
  12. A. Suiker, A. Metrikine, R. De Borst, Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models, International Journal of Solids and Structures 38 (2001) 1563–1583. [CrossRef]
  13. J.N. Grima, R. Caruana-Gauci, M.R. Dudek, K.W. Wojciechowski, R. Gatt, Smart metamaterials with tunable auxetic and other properties, Smart Materials and Structures 22 (2013) 084016. [CrossRef]
  14. E. du Trémolet de Lacheisserie, D. Gignoux, M. Schlenker (Eds.), Magnetism: fundamentals, Springer, New York, 2005.
  15. K.W. Yung, P.B. Landecker, D.D. Villani, An analytic solution for the force between two magnetic dipoles, Magnetic and Electrical Separation 9 (1998) 39–52. [CrossRef]
  16. H. Goldstein, Classical Mechanics, Addison-Wesley Publishing Company, Inc, Cambridge, MA, 1953.
  17. S.S. Rao, Engineering Optimization: Theory and Practice. 4th ed., John Wiley & Sons, New York, 2009.
  18. R.D. Cook, D.S. Malkus, M.E. Plesha, Concepts and applications of finite element analysis. 3rd ed., John Wiley & Sons, New York, 1989.
  19. M. Abramowitz, I.A. Stegun, et al., Handbook of mathematical functions, Vol. 1, Dover, New York, 1972.
  20. M. Schaeffer, M. Ruzzene, Dynamic reconfiguration of magneto-elastic lattices, Comptes Rendus Mécanique 343 (12) (2015) 670–679. [CrossRef]
  21. J.N. Grima, R. Caruana-Gauci, K.W. Wojciechowski, K.E. Evans, Smart hexagonal truss systems exhibiting negative compressibility through constrained angle stretching, Smart Materials and Structures 22 (2013) 084015. [CrossRef]