Advanced Metamaterials in Microwaves, Optics and Mechanics
Open Access
Issue
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
Article Number 17
Number of page(s) 8
DOI https://doi.org/10.1051/epjam/2016001
Published online 26 February 2016
  1. R. Lakes, Foam structures with a negative Poisson’s ratio, Science 235 (1987) 1038–1040. [CrossRef] [PubMed]
  2. R. Shahar, P. Zaslansky, M. Barak, A.A. Friesem, J.D. Currey, S. Weiner, Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry, J. Biomech 40 (2007) 252–264. [CrossRef]
  3. M. Kadic, T. Bückmann, R. Schittny, M. Wegener, Metamaterials beyond electromagnetism, Rep. Prog. Phys. 76 (2013) 126501. [CrossRef]
  4. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography, Adv. Mater. 24 (2012) 2710. [CrossRef]
  5. S. Brûlé, E. Javelaud, S. Enoch, S. Guenneau, Experiments on seismic metamaterials: molding surface waves, Phys. Rev. Lett. 112 (2014) 133901. [CrossRef]
  6. S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, V. Laude, Observation of surface-guided waves in holey hypersonic phononic crystal, Appl. Phys. Lett. 98 (2011) 171908. [CrossRef]
  7. Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science 289 (2000) 1734. [CrossRef] [PubMed]
  8. J. Li, C.T. Chan, Double-negative acoustic metamaterials, Phys. Rev. E 70 (2004) 055602. [CrossRef]
  9. A.B. Movchan, S. Guenneau, Split-ring resonators and localized modes, Phys. Rev. B 70 (2004) 125116. [CrossRef]
  10. A. Ávila, G. Griso, B. Miara, Bandes phoniques interdites en élasticité linéarisée, C.R. Acad. Sci. Paris: Ser. I 340 (2005) 933–938. [CrossRef]
  11. Z. Liu, C.T. Chan, P. Sheng, Analytic model of phononic crystals with local resonance, Phys. Rev. B 71 (2005) 014103. [CrossRef]
  12. N. Fang, D.J. Xi, J.Y. Xu, M. Ambrati, W. Sprituravanich, C. Sun, X. Zhang, Ultrasonic metamaterials with negative modulus, Nat. Mater. 5 (2006) 452. [CrossRef]
  13. G.W. Milton, J.R. Willis, On modifications of Newton’s second law and linear continuum elastodynamics, Proc. R. Soc. A 463 (2007) 855–880. [CrossRef]
  14. A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, B. Aoubiza, Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface, Phys. Rev. B 81 (2010) 214303. [CrossRef]
  15. Y. Achaoui, V. Laude, S. Benchabane, A. Khelif, Local resonances in phononic crystals and in random arrangements of pillars on a surface, J. Appl. Phys. 114 (2013) 104503. [CrossRef]
  16. A. Colombi, P. Roux, M. Rupin, Sub-wavelength energy trapping of elastic waves in a meta-material, J. Acoust. Soc. Am. 136 (2014) EL192–EL196. [CrossRef]
  17. V.G. Veselago, The electrodnamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10 (1968) 509–514. [CrossRef]
  18. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000) 3966–3969. [CrossRef] [PubMed]
  19. R.A. Shelby, D.R. Smith, S. Shultz, Experimental verification of a negative index of refraction, Science 292 (2001) 77–79. [CrossRef] [PubMed]
  20. S. Yang, J.H. Page, L. Zhengyou, M.L. Cowan, C.T. Chan, P. Sheng, Focusing of sound in a 3D phononic crystal, Phys. Rev. Lett. 93 (2004) 024301. [CrossRef] [PubMed]
  21. M. Dubois, E. Bossy, S. Enoch, S. Guenneau, G. Lerosey, P. Sebbah, Time-driven super-oscillations with negative refraction, Phys. Rev. Lett. 114 (2013) 013902. [CrossRef]
  22. S. Brulé, S. Enoch, S. Guenneau, Flat seismic lens, arXiv:1602.04492, 2016 (http://arxiv.org/abs/1602.04492).
  23. A. Colombi, P. Roux, S. Guenneau, P. Gueguen, R.V. Craster, Scientific Rep. 6 (2016) 19238, DOI: 10.1038/srep19238 [CrossRef]
  24. S. Brulé, E. Javelaud, M. Marchand, Chimneys health monitoring during a nearby heavy dynamic compaction site, in Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2012, 4–6 July 2012, Bordeaux, France, Tome II, pp, 919–926, 2012.
  25. T. Gmur, Dynamique des structures, analyse modale numérique, Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 2008.
  26. S.H. Kim, M.P. Das, Seismic waveguide of metamaterials, Mod. Phys. Lett. B 26 (2012) 1250105. [CrossRef]
  27. Z. Shi, Z. Cheng, H. Xiang, Seismic isolation foundations with effective attenuation zones, Soil Dyn. Earthquake Eng. 57 (2014) 143–151. [CrossRef]
  28. S. Krodel, N. Thome, C. Daraio, Wide band-gap seismic metastructures, Ex. Mech. Letters 4 (2015), 111–117, DOI: 10.1016/j.eml.2015.05.004. [CrossRef]
  29. R.V. Craster, S. Guenneau, Acoustic metamaterials, Springer Verlag, London, 2012.
  30. J.L. Auriault, C. Boutin, Long wavelength inner-resonance cut-off frequencies in elastic composite materials, Int. J. Solids Struct. 49 (2012) 3269–3281. [CrossRef]
  31. R.M. Christensen, K.H. Lo, Solution for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids 27 (1979) 315–330. [CrossRef]
  32. S. Nemat-Nasser, J.R. Willis, Homogenization of periodic elastic composites and locally resonant sonic materials, Phys. Rev. B. 83 (2011) 104103. [CrossRef]
  33. R.V. Craster, J. Kaplunov, A.V. Pichugin, High frequency homogenization for periodic media, Proc. R. Soc. Lond. A 466 (2010) 2341–2362. [CrossRef]
  34. T. Antonakakis, R.V. Craster, High frequency asymptotics for microstructured thin elastic plates and platonics, Proc. R. Soc. Lond. A 468 (2012) 1408–1427. [CrossRef]
  35. T. Antonakakis, R.V. Craster, S. Guenneau, Homogenisation for elastic photonic crystals and metamaterials, J. Mech. Phys. Solids 17 (2014) 84. [CrossRef]
  36. A. Srivastava, Elastic metamaterials and dynamic homogenization: a review, Int. J. Smart & Nano Mat. 6 (2015) 41–60. [CrossRef]
  37. J.-L. Auriault, Effective macroscopic description for heat conduction in periodic composites, Int. J. Heat Mass Transf. 26 (1983) 861–869. [CrossRef]
  38. J.-L. Auriault, G. Bonnet, Dynamique des composites élastiques périodiques, Arch. Mech. 37 (1985) 269–284.
  39. V.V. Zhikov, On an extension of the method of two-scale convergence and its applications, Sbor. Math. 191 (2000) 973–1014. [CrossRef] [MathSciNet]
  40. V.P. Smyshlyaev, Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization, Mech. Mater. 41 (2009) 434–447. [CrossRef]
  41. X.X. Su, Y.F. Wang, Y.S. Wang, Effects of Poisson’s ratio on the band gaps and defect states in two-dimensional vacuum: solid porous phononic crystals, Ultrasonics 52 (2012) 225–265.
  42. O. Sigmund, J.S. Jensen, Systematic design of phononic band–gap materials and structures by topology optimization, Philos. Trans. R. Soc. Lond. Ser. A 361 (2003) 1001–1019. [CrossRef]
  43. Y. Achaoui, B. Ungureanu, S. Enoch, S. Brûlé, S. Guenneau, Seismic waves damping with arrays of inertial resonators, arXiv:1512.06078, 2015.
  44. P. Wang, F. Casadei, S. Shan, JC Weaver, K Bertoldi, Harnessing buckling to design tunable locally resonant acoustic metamaterials, Phys. Rev. Lett. 113 (2014) 014301. [CrossRef]
  45. Y. Xiao, J. Wen, W. Wen, Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators, New J. Phys. 14 (2012) 033042. [CrossRef]
  46. D. Torrent, Y. Pennec, B. Djafari-Rouhani, Effective medium theory for elastic metamaterials in thin elastic plates, Phys. Rev. B 90 (2014) 104110. [CrossRef]
  47. J.N. Grima, L. Mizzi, K.M. Azzopardi, R. Gatt, Auxetic perforated mechanical metamaterials with randomly oriented cuts, Adv. Mater. 28 (2015) 385–389, DOI: 10.1002/adma.201503653. [CrossRef]
  48. J.N. Grima, R. Caruana-Gauci, K.W. Wojciechowski, R. Gatt, Smart metamaterials with tunable auxetic and other properties, Smart Mater. Struc. 22 (2013) 084016. [CrossRef]
  49. J.N. Grima, R. Caruana-Gauci, Mechanical metamaterials: materials that push back, Nat. Mater. 11 (2012) 565–566. [CrossRef]
  50. Z.G. Nicolau, A.E. Motter, Mechanical metamaterials with negative compressibility transitions, Nat. Mater. 11 (2012) 608–613. [CrossRef]
  51. S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, 3D soft metamaterials with negative Poisson’s ratio, Adv. Mater. 25 (2013) 5044–5049. [CrossRef]
  52. R. Lakes, Advances in negative Poisson’s ratio materials, Adv. Mater. 5 (1993) 293–296. [CrossRef]
  53. J. Christensen, M. Kadic, O. Kraft, M. Wegener, Vibrant times for mechanical metamaterials, MRS Communications 5 (2015) 453–462. [CrossRef]
  54. P.S. Theocaris, G.E. Stavroulakis, P.D. Panagiotopoulos, Negative Poisson’s ratio in composites with star-shaped inclusions: a numerical homogenization approach, Arch. Appl. Mech. 67 (1997) 274–286. [CrossRef]
  55. P.S. Theocaris, G.E. Stavroulakis, The homogenization method for the study of Poisson’s ratio in fiber composites, Arch. Appl. Mech. 68 (1998) 281–295. [CrossRef]
  56. R.F. Almgren, An isotropic three-dimensional structure with Poisson’s ratio = -1, J. Electricity 15 (1985) 427–430.
  57. G.W. Milton, The theory of composites, Cambridge University Press, 2002. [CrossRef]
  58. S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Acoustic metamaterial with negative modulus, J. Phys.: Condens. Matter 21 (2009) 175704. [CrossRef]
  59. R. Reitherman, Earthquakes and Engineers: An International History, ASCE Press, Reston, VA, 2012. [CrossRef]