Open Access
Review
Issue
EPJ Applied Metamaterials
Volume 1, 2014
Article Number 7
Number of page(s) 12
DOI https://doi.org/10.1051/epjam/2015001
Published online 18 March 2015
  1. H. Chen, Metamaterials: constitutive parameters, performance, and chemical methods for realization, Journal of Materials Chemistry 21 (2011) 6452–6463. [CrossRef]
  2. Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology, Chemical Society Reviews 40 (2011) 2494–2507. [CrossRef] [PubMed]
  3. A. Alù, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Physical Review E 72 (2005) 016623. [CrossRef]
  4. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312 (2006) 1780–1782. [CrossRef] [MathSciNet] [PubMed]
  5. U. Leonhardt, Optical conformal mapping, Science 312 (2006) 1777–1780. [CrossRef] [MathSciNet] [PubMed]
  6. U. Leonhardt, T. Tyc, Broadband invisibility by non-Euclidean cloaking, Science 323 (2009) 110–112. [CrossRef] [PubMed]
  7. U. Leonhardt, Notes on conformal invisibility devices, New Journal of Physics 8 (2006) 118–118. [CrossRef]
  8. W.X. Jiang, T.J. Cui, H.F. Ma, X.M. Yang, Q. Cheng, Layered high-gain lens antennas via discrete optical transformation, Applied Physics Letters 93 (2008) 221906. [CrossRef]
  9. N. Kundtz, D.R. Smith, Extreme-angle broadband metamaterial lens, Nature materials 9 (2010) 129–132. [CrossRef]
  10. M. Tsang, D. Psaltis, Magnifying perfect lens and superlens design by coordinate transformation, Physical Review B 77 (2008) 035122. [CrossRef]
  11. M. Yan, W. Yan, M. Qiu, Cylindrical superlens by a coordinate transformation, Physical Review B 78 (2008) 125133.
  12. M. Rahm, et al., Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photonics and Nanostructures – Fundamentals and Applications 6 (2008) 87–95. [CrossRef]
  13. H. Chen, C.T. Chan, Transformation media that rotate electromagnetic fields, Applied Physics Letters 90 (2007) 241105. [CrossRef]
  14. H. Chen, et al., Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Physical Review Letters 102 (2009) 183903. [CrossRef]
  15. J. Huangfu, et al., Application of coordinate transformation in bent waveguides, Journal of Applied Physics 104 (2008) 014502. [CrossRef]
  16. M. Rahm, S.A. Cummer, D. Schurig, J.B. Pendry, D.R. Smith, Optical design of reflectionless complex media by finite embedded coordinate transformations, Physical Review Letters 100 (2008) 063903. [CrossRef] [PubMed]
  17. E.E. Narimanov, A.V. Kildishev, Optical black hole: Broadband omnidirectional light absorber, Applied Physics Letters 95 (2009) 041106. [CrossRef]
  18. H. Chen, C.T. Chan, P. Sheng, Transformation optics and metamaterials, Nature Materials 9 (2010) 387–396. [CrossRef] [PubMed]
  19. Y. Liu, X. Zhang, Recent advances in transformation optics, Nanoscale 4 (2012) 5277–5292. [CrossRef]
  20. J.B. Pendry, A. Aubry, D.R. Smith, S.A. Maier, Transformation optics and subwavelength control of light, Science 337 (2012) 549–552. [CrossRef] [MathSciNet] [PubMed]
  21. G.W. Milton, M. Briane, J.R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New Journal of Physics 8 (2006) 248–248. [CrossRef]
  22. U. Leonhardt, Transformation optics and the geometry of light, Progress in Optics 53 (2008) 69–152. [CrossRef]
  23. S.A. Cummer, B.-I. Popa, D. Schurig, D.R. Smith, Full-wave simulations of electromagnetic cloaking structures, Physical Review E 74 (2006) 036621. [CrossRef]
  24. D. Schurig, et al., Metamaterial electromagnetic cloak at microwave frequencies, Science 314 (2006) 977–980. [CrossRef] [PubMed]
  25. Y. Huang, Y. Feng, T. Jiang, Electromagnetic cloaking by layered structure of homogeneous isotropic materials, Optics express 15 (2007) 11133–11141. [CrossRef] [PubMed]
  26. B. Zhang, H. Chen, B.-I. Wu, J. Kong, Extraordinary surface voltage effect in the invisibility cloak with an active device inside, Physical Review Letters 100 (2008) 063904. [CrossRef] [PubMed]
  27. B. Zhang, et al., Response of a cylindrical invisibility cloak to electromagnetic waves, Physical Review B 76 (2007) 121101. [CrossRef]
  28. Y. Luo, J. Zhang, H. Chen, S. Xi, B.-I. Wu, Cylindrical cloak with axial permittivity/permeability spatially invariant, Applied Physics Letters 93 (2008) 033504. [CrossRef]
  29. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, G.W. Milton, Nonmagnetic cloak with minimized scattering, Applied Physics Letters 91 (2007) 111105. [CrossRef]
  30. L. Huang, et al., Generalized transformation for nonmagnetic invisibility cloak with minimized scattering, JOSA B 28 (2011) 922–928. [CrossRef]
  31. B. Kanté, D. Germain, A. de Lustrac, Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies, Physical Review B 80 (2009) 201104. [CrossRef]
  32. W. Yan, M. Yan, M. Qiu, Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering, Applied Physics Letters 93 (2008) 021909. [CrossRef]
  33. J. Zhang, Y. Luo, N.A. Mortensen, Minimizing the scattering of a nonmagnetic cloak, Applied Physics Letters 96 (2010) 113511. [CrossRef]
  34. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials, Nature Photonics 1 (2007) 224–227. [CrossRef]
  35. Z. Chang, X. Zhou, J. Hu, G. Hu, Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries, Optics express 18 (2010) 6089–6096. [CrossRef]
  36. K. Yao, H. Chen, Y. Liu, X. Jiang, An analogy strategy for transformation optics, New Journal of Physics 16 (2014) 063008. [CrossRef]
  37. P. Zhang, M. Lobet, S. He, Carpet cloaking on a dielectric half-space, Optics Express 18 (2010) 18158–18163. [CrossRef]
  38. J. Li, J.B. Pendry, Hiding under the carpet: a new strategy for cloaking, Physical Review Letters 101 (2008) 203901. [CrossRef] [PubMed]
  39. P.A. Huidobro, M.L. Nesterov, L. Martin-Moreno, F.J. Garcia-Vidal, Transformation optics for plasmonics, Nano Letters 10 (2010) 1985–1990. [CrossRef] [PubMed]
  40. Y. Liu, T. Zentgraf, G. Bartal, X. Zhang, Transformational plasmon optics, Nano Letters 10 (2010) 1991–1997. [CrossRef]
  41. J. Renger, et al., Hidden progress: broadband plasmonic invisibility, Optics Express 18 (2010) 15757–15768. [CrossRef]
  42. R. Liu, et al., Broadband ground-plane cloak, Science 323 (2009) 366–369. [CrossRef]
  43. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made of dielectrics, Nature Materials 8 (2009) 568–571. [CrossRef] [PubMed]
  44. L.H. Gabrielli, J. Cardenas, C.B. Poitras, M. Lipson, Silicon nanostructure cloak operating at optical frequencies, Nature Photonics 3 (2009) 461–463. [CrossRef]
  45. F. Zhou, et al., Hiding a realistic object using a broadband terahertz invisibility cloak, Scientific Reports 1 (2011) 78.
  46. D. Bao, et al., All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam, New Journal of Physics 13 (2011) 103023. [CrossRef]
  47. E. Kallos, C. Argyropoulos, Y. Hao, Ground-plane quasicloaking for free space, Physical Review A 79 (2009) 063825. [CrossRef]
  48. H.F. Ma, T.J. Cui, Compact-sized and broadband carpet cloak and free-space cloak, Optics Express 17 (2009) 19947–19959. [CrossRef]
  49. D. Shin, et al., Broadband electromagnetic cloaking with smart metamaterials, Nature Communications 3 (2012) 1213. [CrossRef]
  50. T. Ergin, J. Fischer, M. Wegener, Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak, Physical Review Letters 107 (2011) 173901. [CrossRef]
  51. M. Gharghi, et al., A carpet cloak for visible light, Nano Letters 11 (2011) 2825–2828. [CrossRef]
  52. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths, Science 328 (2010) 337–339. [CrossRef] [PubMed]
  53. H.F. Ma, T.J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials, Nature Communications 1 (2010) 21.
  54. N.I. Landy, N. Kundtz, D.R. Smith, Designing three-dimensional transformation optical media using quasiconformal coordinate transformations, Physical Review Letters 105 (2010) 193902. [CrossRef]
  55. B. Zhang, T. Chan, B.-I. Wu, Lateral shift makes a ground-plane cloak detectable, Physical Review Letters 104 (2010) 233903. [CrossRef]
  56. C. Li, X. Liu, F. Li, Experimental observation of invisibility to a broadband electromagnetic pulse by a cloak using transformation media based on inductor-capacitor networks, Physical Review B 81 (2010) 115133. [CrossRef]
  57. X. Liu, et al., Experimental verification of broadband invisibility using a cloak based on inductor-capacitor networks, Applied Physics Letters 95 (2009) 191107. [CrossRef]
  58. X. Sheng, C. Hongsheng, W. Bae-Ian, K. Jin Au, One-directional perfect cloak created with homogeneous material, IEEE Microwave and Wireless Components Letters 19 (2009) 131–133. [CrossRef]
  59. Y. Luo, J. Zhang, H. Chen, A rigorous analysis of plane-transformed invisibility cloaks, IEEE Transactions on Antennas and Propagation 57 (2009) 3926–3933. [CrossRef]
  60. X. Chen, et al., Macroscopic invisibility cloaking of visible light, Nature Communications 2 (2011) 176. [CrossRef]
  61. B. Zhang, Y. Luo, X. Liu, G. Barbastathis, Macroscopic invisibility cloak for visible light, Physical Review Letters 106 (2011) 033901. [CrossRef]
  62. D. Liang, et al., Robust large dimension terahertz cloaking, Advanced Materials 24 (2012) 916–921. [CrossRef]
  63. X. Xu, Y. Feng, Y. Hao, J. Zhao, T. Jiang, Infrared carpet cloak designed with uniform silicon grating structure, Applied Physics Letters 95 (2009) 184102. [CrossRef]
  64. X. Xu, Y. Feng, Z. Yu, T. Jiang, J. Zhao, Simplified ground plane invisibility cloak by multilayer dielectrics, Optics Express 18 (2010) 24477–24485. [CrossRef]
  65. J. Zhang, L. Liu, Y. Luo, S. Zhang, N.A. Mortensen, Homogeneous optical cloak constructed with uniform layered structures, Optics Express 19 (2011) 8625–8631. [CrossRef]
  66. X. Xu, et al., Broad band invisibility cloak made of normal dielectric multilayer, Applied Physics Letters 99 (2011) 154104. [CrossRef]
  67. N. Landy, D.R. Smith, A full-parameter unidirectional metamaterial cloak for microwaves, Nature Materials 12 (2013) 25–28. [CrossRef]
  68. H. Chen, B. Zheng, Broadband polygonal invisibility cloak for visible light, Scientific Reports 2 (2012) 255.
  69. T. Han, C. Qiu, X. Tang, An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation, Journal of Optics 12 (2010) 095103. [CrossRef]
  70. W. Li, J. Guan, Z. Sun, W. Wang, Q. Zhang, A near-perfect invisibility cloak constructed with homogeneous materials, Optics Express 17 (2009) 23410–23416. [CrossRef]
  71. H. Chen, et al., Ray-optics cloaking devices for large objects in incoherent natural light, Nature Communications 4 (2013) 2652.
  72. B. Edwards, A. Alù, M. Silveirinha, N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Physical Review Letters 103 (2009) 153901. [CrossRef]
  73. J.C. Soric, et al., Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space, New Journal of Physics 15 (2013) 033037. [CrossRef]
  74. D. Rainwater, et al., Experimental verification of three-dimensional plasmonic cloaking in free-space, New Journal of Physics 14 (2012) 013054. [CrossRef]
  75. A. Alù, Mantle cloak: Invisibility induced by a surface, Physical Review B 80 (2009) 245115. [CrossRef]
  76. M. Silveirinha, A. Alù, N. Engheta, Parallel-plate metamaterials for cloaking structures, Physical Review E 75 (2007) 036603. [CrossRef]
  77. Y. Ma, et al., First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping, Scientific Reports 3 (2013) 2182.
  78. S. Xu, et al., Experimental demonstration of a free-space cylindrical cloak without superluminal propagation, Physical Review Letters 109 (2012) 223903. [CrossRef]
  79. R. Schittny, M. Kadic, T. Buckmann, M. Wegener, Metamaterials Invisibility cloaking in a diffusive light scattering medium, Science 345 (2014) 427–429. [CrossRef]
  80. F. Gomory, et al., Experimental realization of a magnetic cloak, Science 335 (2012) 1466–1468. [CrossRef]
  81. S. Narayana, Y. Sato, DC magnetic cloak, Advanced Materials 24 (2012) 71–74. [CrossRef]
  82. J. Souc, et al., A quasistatic magnetic cloak, New Journal of Physics 15 (2013) 053019. [CrossRef]
  83. T. Han, et al., Manipulating DC currents with bilayer bulk natural materials, Advanced Materials 26 (2014) 3478–3483. [CrossRef]
  84. Q. Ma, Z.L. Mei, S.K. Zhu, T.Y. Jin, T.J. Cui, Experiments on active cloaking and illusion for laplace equation, Physical Review Letters 111 (2013) 173901. [CrossRef]
  85. F. Yang, Z.L. Mei, T.Y. Jin, T.J. Cui, DC electric invisibility cloak, Physical Review Letters 109 (2012) 053902. [CrossRef]
  86. F. Yang, et al., A negative conductivity material makes a dc invisibility cloak hide an object at a distance, Advanced Functional Materials 23 (2013) 4306–4310. [CrossRef]
  87. T. Mitchell, et al., Perfect surface wave cloaks, Physical Review Letters 111 (2013) 213901. [CrossRef]
  88. J.M. Lukens, D.E. Leaird, A.M. Weiner, A temporal cloak at telecommunication data rate, Nature 498 (2013) 205–208. [CrossRef]
  89. H. Chen, C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Applied Physics Letters 91 (2007) 183518. [CrossRef]
  90. S. Cummer, et al., Scattering theory derivation of a 3D acoustic cloaking shell, Physical Review Letters 100 (2008) 024301. [CrossRef] [PubMed]
  91. S.A. Cummer, D. Schurig, One path to acoustic cloaking, New Journal of Physics 9 (2007) 45–45. [CrossRef]
  92. A.N. Norris, Acoustic cloaking theory, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464 (2008) 2411–2434. [CrossRef]
  93. L. Sanchis, et al., Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere, Physical Review Letters 110 (2013) 124301. [CrossRef]
  94. M. Farhat, S. Enoch, S. Guenneau, A. Movchan, Broadband cylindrical acoustic cloak for linear surface waves in a fluid, Physical Review Letters 101 (2008) 134501. [CrossRef] [PubMed]
  95. S. Zhang, C. Xia, N. Fang, Broadband acoustic cloak for ultrasound waves, Physical Review Letters 106 (2011) 024301. [CrossRef] [PubMed]
  96. B.-I. Popa, L. Zigoneanu, S.A. Cummer, Experimental acoustic ground cloak in air, Physical Review Letters 106 (2011) 253901. [CrossRef]
  97. L. Zigoneanu, B.I. Popa, S.A. Cummer, Three-dimensional broadband omnidirectional acoustic ground cloak, Nature Materials 13 (2014) 352–355. [CrossRef]
  98. T. Han, et al., Experimental demonstration of a bilayer thermal cloak, Physical Review Letters 112 (2014) 054302. [CrossRef] [PubMed]
  99. T. Han, T. Yuan, B. Li, C.W. Qiu, Homogeneous thermal cloak with constant conductivity and tunable heat localization, Scientific Reports 3 (2013) 1593.
  100. Y. Ma, L. Lan, W. Jiang, F. Sun, S. He, A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity, NPG Asia Materials 5 (2013) e73. [CrossRef]
  101. H. Xu, X. Shi, F. Gao, H. Sun, B. Zhang, Ultrathin three-dimensional thermal cloak, Physical Review Letters 112 (2014) 054301. [CrossRef] [PubMed]
  102. T. Buckmann, M. Thiel, M. Kadic, R. Schittny, M. Wegener, An elasto-mechanical unfeelability cloak made of pentamode metamaterials, Nature Communications 5 (2014) 4130. [CrossRef]
  103. M. Farhat, S. Guenneau, S. Enoch, , Ultrabroadband elastic cloaking in thin plates, Physical Review Letters 103 (2009) 024301. [CrossRef]
  104. S. Zhang, D. Genov, C. Sun, X. Zhang, Cloaking of matter waves, Physical Review Letters 100 (2008) 123002. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.