Open Access
Review
Issue
EPJ Applied Metamaterials
Volume 1, 2014
Article Number 7
Number of page(s) 12
DOI https://doi.org/10.1051/epjam/2015001
Published online 18 March 2015
  1. H. Chen, Metamaterials: constitutive parameters, performance, and chemical methods for realization, Journal of Materials Chemistry 21 (2011) 6452–6463. [CrossRef]
  2. Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology, Chemical Society Reviews 40 (2011) 2494–2507. [CrossRef] [PubMed]
  3. A. Alù, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Physical Review E 72 (2005) 016623. [CrossRef]
  4. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312 (2006) 1780–1782. [CrossRef] [MathSciNet] [PubMed]
  5. U. Leonhardt, Optical conformal mapping, Science 312 (2006) 1777–1780. [CrossRef] [MathSciNet] [PubMed]
  6. U. Leonhardt, T. Tyc, Broadband invisibility by non-Euclidean cloaking, Science 323 (2009) 110–112. [CrossRef] [PubMed]
  7. U. Leonhardt, Notes on conformal invisibility devices, New Journal of Physics 8 (2006) 118–118. [CrossRef]
  8. W.X. Jiang, T.J. Cui, H.F. Ma, X.M. Yang, Q. Cheng, Layered high-gain lens antennas via discrete optical transformation, Applied Physics Letters 93 (2008) 221906. [CrossRef]
  9. N. Kundtz, D.R. Smith, Extreme-angle broadband metamaterial lens, Nature materials 9 (2010) 129–132. [CrossRef]
  10. M. Tsang, D. Psaltis, Magnifying perfect lens and superlens design by coordinate transformation, Physical Review B 77 (2008) 035122. [CrossRef]
  11. M. Yan, W. Yan, M. Qiu, Cylindrical superlens by a coordinate transformation, Physical Review B 78 (2008) 125133.
  12. M. Rahm, et al., Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photonics and Nanostructures – Fundamentals and Applications 6 (2008) 87–95. [CrossRef]
  13. H. Chen, C.T. Chan, Transformation media that rotate electromagnetic fields, Applied Physics Letters 90 (2007) 241105. [CrossRef]
  14. H. Chen, et al., Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Physical Review Letters 102 (2009) 183903. [CrossRef]
  15. J. Huangfu, et al., Application of coordinate transformation in bent waveguides, Journal of Applied Physics 104 (2008) 014502. [CrossRef]
  16. M. Rahm, S.A. Cummer, D. Schurig, J.B. Pendry, D.R. Smith, Optical design of reflectionless complex media by finite embedded coordinate transformations, Physical Review Letters 100 (2008) 063903. [CrossRef] [PubMed]
  17. E.E. Narimanov, A.V. Kildishev, Optical black hole: Broadband omnidirectional light absorber, Applied Physics Letters 95 (2009) 041106. [CrossRef]
  18. H. Chen, C.T. Chan, P. Sheng, Transformation optics and metamaterials, Nature Materials 9 (2010) 387–396. [CrossRef] [PubMed]
  19. Y. Liu, X. Zhang, Recent advances in transformation optics, Nanoscale 4 (2012) 5277–5292. [CrossRef]
  20. J.B. Pendry, A. Aubry, D.R. Smith, S.A. Maier, Transformation optics and subwavelength control of light, Science 337 (2012) 549–552. [CrossRef] [MathSciNet] [PubMed]
  21. G.W. Milton, M. Briane, J.R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New Journal of Physics 8 (2006) 248–248. [CrossRef]
  22. U. Leonhardt, Transformation optics and the geometry of light, Progress in Optics 53 (2008) 69–152. [CrossRef]
  23. S.A. Cummer, B.-I. Popa, D. Schurig, D.R. Smith, Full-wave simulations of electromagnetic cloaking structures, Physical Review E 74 (2006) 036621. [CrossRef]
  24. D. Schurig, et al., Metamaterial electromagnetic cloak at microwave frequencies, Science 314 (2006) 977–980. [CrossRef] [PubMed]
  25. Y. Huang, Y. Feng, T. Jiang, Electromagnetic cloaking by layered structure of homogeneous isotropic materials, Optics express 15 (2007) 11133–11141. [CrossRef] [PubMed]
  26. B. Zhang, H. Chen, B.-I. Wu, J. Kong, Extraordinary surface voltage effect in the invisibility cloak with an active device inside, Physical Review Letters 100 (2008) 063904. [CrossRef] [PubMed]
  27. B. Zhang, et al., Response of a cylindrical invisibility cloak to electromagnetic waves, Physical Review B 76 (2007) 121101. [CrossRef]
  28. Y. Luo, J. Zhang, H. Chen, S. Xi, B.-I. Wu, Cylindrical cloak with axial permittivity/permeability spatially invariant, Applied Physics Letters 93 (2008) 033504. [CrossRef]
  29. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, G.W. Milton, Nonmagnetic cloak with minimized scattering, Applied Physics Letters 91 (2007) 111105. [CrossRef]
  30. L. Huang, et al., Generalized transformation for nonmagnetic invisibility cloak with minimized scattering, JOSA B 28 (2011) 922–928. [CrossRef]
  31. B. Kanté, D. Germain, A. de Lustrac, Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies, Physical Review B 80 (2009) 201104. [CrossRef]
  32. W. Yan, M. Yan, M. Qiu, Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering, Applied Physics Letters 93 (2008) 021909. [CrossRef]
  33. J. Zhang, Y. Luo, N.A. Mortensen, Minimizing the scattering of a nonmagnetic cloak, Applied Physics Letters 96 (2010) 113511. [CrossRef]
  34. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials, Nature Photonics 1 (2007) 224–227. [CrossRef]
  35. Z. Chang, X. Zhou, J. Hu, G. Hu, Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries, Optics express 18 (2010) 6089–6096. [CrossRef]
  36. K. Yao, H. Chen, Y. Liu, X. Jiang, An analogy strategy for transformation optics, New Journal of Physics 16 (2014) 063008. [CrossRef]
  37. P. Zhang, M. Lobet, S. He, Carpet cloaking on a dielectric half-space, Optics Express 18 (2010) 18158–18163. [CrossRef]
  38. J. Li, J.B. Pendry, Hiding under the carpet: a new strategy for cloaking, Physical Review Letters 101 (2008) 203901. [CrossRef] [PubMed]
  39. P.A. Huidobro, M.L. Nesterov, L. Martin-Moreno, F.J. Garcia-Vidal, Transformation optics for plasmonics, Nano Letters 10 (2010) 1985–1990. [CrossRef] [PubMed]
  40. Y. Liu, T. Zentgraf, G. Bartal, X. Zhang, Transformational plasmon optics, Nano Letters 10 (2010) 1991–1997. [CrossRef]
  41. J. Renger, et al., Hidden progress: broadband plasmonic invisibility, Optics Express 18 (2010) 15757–15768. [CrossRef]
  42. R. Liu, et al., Broadband ground-plane cloak, Science 323 (2009) 366–369. [CrossRef]
  43. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made of dielectrics, Nature Materials 8 (2009) 568–571. [CrossRef] [PubMed]
  44. L.H. Gabrielli, J. Cardenas, C.B. Poitras, M. Lipson, Silicon nanostructure cloak operating at optical frequencies, Nature Photonics 3 (2009) 461–463. [CrossRef]
  45. F. Zhou, et al., Hiding a realistic object using a broadband terahertz invisibility cloak, Scientific Reports 1 (2011) 78.
  46. D. Bao, et al., All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam, New Journal of Physics 13 (2011) 103023. [CrossRef]
  47. E. Kallos, C. Argyropoulos, Y. Hao, Ground-plane quasicloaking for free space, Physical Review A 79 (2009) 063825. [CrossRef]
  48. H.F. Ma, T.J. Cui, Compact-sized and broadband carpet cloak and free-space cloak, Optics Express 17 (2009) 19947–19959. [CrossRef]
  49. D. Shin, et al., Broadband electromagnetic cloaking with smart metamaterials, Nature Communications 3 (2012) 1213. [CrossRef]
  50. T. Ergin, J. Fischer, M. Wegener, Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak, Physical Review Letters 107 (2011) 173901. [CrossRef]
  51. M. Gharghi, et al., A carpet cloak for visible light, Nano Letters 11 (2011) 2825–2828. [CrossRef]
  52. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths, Science 328 (2010) 337–339. [CrossRef] [PubMed]
  53. H.F. Ma, T.J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials, Nature Communications 1 (2010) 21.
  54. N.I. Landy, N. Kundtz, D.R. Smith, Designing three-dimensional transformation optical media using quasiconformal coordinate transformations, Physical Review Letters 105 (2010) 193902. [CrossRef]
  55. B. Zhang, T. Chan, B.-I. Wu, Lateral shift makes a ground-plane cloak detectable, Physical Review Letters 104 (2010) 233903. [CrossRef]
  56. C. Li, X. Liu, F. Li, Experimental observation of invisibility to a broadband electromagnetic pulse by a cloak using transformation media based on inductor-capacitor networks, Physical Review B 81 (2010) 115133. [CrossRef]
  57. X. Liu, et al., Experimental verification of broadband invisibility using a cloak based on inductor-capacitor networks, Applied Physics Letters 95 (2009) 191107. [CrossRef]
  58. X. Sheng, C. Hongsheng, W. Bae-Ian, K. Jin Au, One-directional perfect cloak created with homogeneous material, IEEE Microwave and Wireless Components Letters 19 (2009) 131–133. [CrossRef]
  59. Y. Luo, J. Zhang, H. Chen, A rigorous analysis of plane-transformed invisibility cloaks, IEEE Transactions on Antennas and Propagation 57 (2009) 3926–3933. [CrossRef]
  60. X. Chen, et al., Macroscopic invisibility cloaking of visible light, Nature Communications 2 (2011) 176. [CrossRef]
  61. B. Zhang, Y. Luo, X. Liu, G. Barbastathis, Macroscopic invisibility cloak for visible light, Physical Review Letters 106 (2011) 033901. [CrossRef]
  62. D. Liang, et al., Robust large dimension terahertz cloaking, Advanced Materials 24 (2012) 916–921. [CrossRef]
  63. X. Xu, Y. Feng, Y. Hao, J. Zhao, T. Jiang, Infrared carpet cloak designed with uniform silicon grating structure, Applied Physics Letters 95 (2009) 184102. [CrossRef]
  64. X. Xu, Y. Feng, Z. Yu, T. Jiang, J. Zhao, Simplified ground plane invisibility cloak by multilayer dielectrics, Optics Express 18 (2010) 24477–24485. [CrossRef]
  65. J. Zhang, L. Liu, Y. Luo, S. Zhang, N.A. Mortensen, Homogeneous optical cloak constructed with uniform layered structures, Optics Express 19 (2011) 8625–8631. [CrossRef]
  66. X. Xu, et al., Broad band invisibility cloak made of normal dielectric multilayer, Applied Physics Letters 99 (2011) 154104. [CrossRef]
  67. N. Landy, D.R. Smith, A full-parameter unidirectional metamaterial cloak for microwaves, Nature Materials 12 (2013) 25–28. [CrossRef]
  68. H. Chen, B. Zheng, Broadband polygonal invisibility cloak for visible light, Scientific Reports 2 (2012) 255.
  69. T. Han, C. Qiu, X. Tang, An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation, Journal of Optics 12 (2010) 095103. [CrossRef]
  70. W. Li, J. Guan, Z. Sun, W. Wang, Q. Zhang, A near-perfect invisibility cloak constructed with homogeneous materials, Optics Express 17 (2009) 23410–23416. [CrossRef]
  71. H. Chen, et al., Ray-optics cloaking devices for large objects in incoherent natural light, Nature Communications 4 (2013) 2652.
  72. B. Edwards, A. Alù, M. Silveirinha, N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Physical Review Letters 103 (2009) 153901. [CrossRef]
  73. J.C. Soric, et al., Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space, New Journal of Physics 15 (2013) 033037. [CrossRef]
  74. D. Rainwater, et al., Experimental verification of three-dimensional plasmonic cloaking in free-space, New Journal of Physics 14 (2012) 013054. [CrossRef]
  75. A. Alù, Mantle cloak: Invisibility induced by a surface, Physical Review B 80 (2009) 245115. [CrossRef]
  76. M. Silveirinha, A. Alù, N. Engheta, Parallel-plate metamaterials for cloaking structures, Physical Review E 75 (2007) 036603. [CrossRef]
  77. Y. Ma, et al., First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping, Scientific Reports 3 (2013) 2182.
  78. S. Xu, et al., Experimental demonstration of a free-space cylindrical cloak without superluminal propagation, Physical Review Letters 109 (2012) 223903. [CrossRef]
  79. R. Schittny, M. Kadic, T. Buckmann, M. Wegener, Metamaterials Invisibility cloaking in a diffusive light scattering medium, Science 345 (2014) 427–429. [CrossRef]
  80. F. Gomory, et al., Experimental realization of a magnetic cloak, Science 335 (2012) 1466–1468. [CrossRef]
  81. S. Narayana, Y. Sato, DC magnetic cloak, Advanced Materials 24 (2012) 71–74. [CrossRef]
  82. J. Souc, et al., A quasistatic magnetic cloak, New Journal of Physics 15 (2013) 053019. [CrossRef]
  83. T. Han, et al., Manipulating DC currents with bilayer bulk natural materials, Advanced Materials 26 (2014) 3478–3483. [CrossRef]
  84. Q. Ma, Z.L. Mei, S.K. Zhu, T.Y. Jin, T.J. Cui, Experiments on active cloaking and illusion for laplace equation, Physical Review Letters 111 (2013) 173901. [CrossRef]
  85. F. Yang, Z.L. Mei, T.Y. Jin, T.J. Cui, DC electric invisibility cloak, Physical Review Letters 109 (2012) 053902. [CrossRef]
  86. F. Yang, et al., A negative conductivity material makes a dc invisibility cloak hide an object at a distance, Advanced Functional Materials 23 (2013) 4306–4310. [CrossRef]
  87. T. Mitchell, et al., Perfect surface wave cloaks, Physical Review Letters 111 (2013) 213901. [CrossRef]
  88. J.M. Lukens, D.E. Leaird, A.M. Weiner, A temporal cloak at telecommunication data rate, Nature 498 (2013) 205–208. [CrossRef]
  89. H. Chen, C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Applied Physics Letters 91 (2007) 183518. [CrossRef]
  90. S. Cummer, et al., Scattering theory derivation of a 3D acoustic cloaking shell, Physical Review Letters 100 (2008) 024301. [CrossRef] [PubMed]
  91. S.A. Cummer, D. Schurig, One path to acoustic cloaking, New Journal of Physics 9 (2007) 45–45. [CrossRef]
  92. A.N. Norris, Acoustic cloaking theory, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464 (2008) 2411–2434. [CrossRef]
  93. L. Sanchis, et al., Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere, Physical Review Letters 110 (2013) 124301. [CrossRef]
  94. M. Farhat, S. Enoch, S. Guenneau, A. Movchan, Broadband cylindrical acoustic cloak for linear surface waves in a fluid, Physical Review Letters 101 (2008) 134501. [CrossRef] [PubMed]
  95. S. Zhang, C. Xia, N. Fang, Broadband acoustic cloak for ultrasound waves, Physical Review Letters 106 (2011) 024301. [CrossRef] [PubMed]
  96. B.-I. Popa, L. Zigoneanu, S.A. Cummer, Experimental acoustic ground cloak in air, Physical Review Letters 106 (2011) 253901. [CrossRef]
  97. L. Zigoneanu, B.I. Popa, S.A. Cummer, Three-dimensional broadband omnidirectional acoustic ground cloak, Nature Materials 13 (2014) 352–355. [CrossRef]
  98. T. Han, et al., Experimental demonstration of a bilayer thermal cloak, Physical Review Letters 112 (2014) 054302. [CrossRef] [PubMed]
  99. T. Han, T. Yuan, B. Li, C.W. Qiu, Homogeneous thermal cloak with constant conductivity and tunable heat localization, Scientific Reports 3 (2013) 1593.
  100. Y. Ma, L. Lan, W. Jiang, F. Sun, S. He, A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity, NPG Asia Materials 5 (2013) e73. [CrossRef]
  101. H. Xu, X. Shi, F. Gao, H. Sun, B. Zhang, Ultrathin three-dimensional thermal cloak, Physical Review Letters 112 (2014) 054301. [CrossRef] [PubMed]
  102. T. Buckmann, M. Thiel, M. Kadic, R. Schittny, M. Wegener, An elasto-mechanical unfeelability cloak made of pentamode metamaterials, Nature Communications 5 (2014) 4130. [CrossRef]
  103. M. Farhat, S. Guenneau, S. Enoch, , Ultrabroadband elastic cloaking in thin plates, Physical Review Letters 103 (2009) 024301. [CrossRef]
  104. S. Zhang, D. Genov, C. Sun, X. Zhang, Cloaking of matter waves, Physical Review Letters 100 (2008) 123002. [CrossRef]