Open Access
Issue
EPJ Applied Metamaterials
Volume 1, 2014
Article Number 5
Number of page(s) 9
DOI https://doi.org/10.1051/epjam/2014004
Published online 08 July 2014
  1. J.C. Bose, On the rotation of plane of polarisation of electric waves by a twisted structure, Proc. Royal Society 63 (1898) 146–152. [CrossRef]
  2. I.V. Lindell, A.H. Sihvola, J. Kurkijarvi, Karl F. Lindman: The last Hertzian, and a harbinger of electromagnetic chirality, IEEE Antennas Propag. Mag. 34, 3 (1992) 24–30. [CrossRef]
  3. W.E. Kock, Metallic delay lenses, Bell Syst. Tech. J. 27 (1948) 58–82. [CrossRef]
  4. W. Rotman, Plasma simulation by artificial dielectrics and parallel-plate media, IRE Trans. Antennas Propag. 10 (1962) 82–95. [CrossRef]
  5. N. Engheta (Guest Ed.), Wave interactions with chiral and complex media, Special Issue of the J. Electromagn. Waves Appl. 6, 5/6 (1992).
  6. R.W. Ziolkowski, F. Auzanneau, Artificial molecule realization of a magnetic wall, J. Appl. Phys. 82, 7 (1997) 3192–3194. [CrossRef]
  7. R.W. Ziolkowski, F. Auzanneau, Passive artificial molecule realizations of dielectric materials, J. Appl. Phys. 82, 7 (1997) 3195–3198. [CrossRef]
  8. F. Auzanneau, R.W. Ziolkowski, Theoretical study of synthetic bianisotropic materials, J. Electromagn. Waves Appl. 12, 3 (1998) 353–370. [CrossRef]
  9. F. Auzanneau, R.W. Ziolkowski, Microwave signal rectification using artificial composite materials composed of diode loaded, electrically small dipole antennas, IEEE Trans. Microwave Theor. Tech. 46, 11 (1998) 1628–1637. [CrossRef]
  10. F. Auzanneau, R.W. Ziolkowski, Explicit matrix formulation for the analysis of synthetic linearly and nonlinearly loaded materials in FDTD, J. Electromagn. Waves Appl. 13 (1999) 1509–1510; Progress in Electromagnetics Research, PIER 24, 139–161, 1999. [CrossRef]
  11. F. Auzanneau, R.W. Ziolkowski, Artificial composite materials consisting of linearly and nonlinearly loaded electrically small antennas: operational amplifier based circuits with applications to smart skins, IEEE Trans. Antennas Propag. 47 8 (1999) 1330–1339. [CrossRef]
  12. R.W. Ziolkowski, The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials, IEEE Antennas Propag. 45, 4 (1997) 656–671. [CrossRef]
  13. R.W. Ziolkowski, Time derivative Lorentz-materials and their utilization as electromagnetic absorbers, Phys. Rev. E 55, 6 (1997) 7696–7703. [CrossRef]
  14. R.W. Ziolkowski, Time derivative Lorentz-material based absorbing boundary conditions, IEEE Antennas Propag. 45, 10 (1997) 1530–1535. [CrossRef]
  15. D.C. Wittwer, R.W. Ziolkowski, Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media, IEEE Trans. Antennas Propag. 48, 2 (2000) 192–199. [CrossRef]
  16. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994) 185–200. [NASA ADS] [CrossRef] [MathSciNet]
  17. R.M. Walser, Electromagnetic metamaterials, in Proc. SPIE 4467 Complex Mediums II: Beyond Linear Isotropic Dielectrics, 1, San Diego, CA, 2001, pp. 1–15.
  18. Speakers included: Roger Walser (UT Austin), RM Dickinson (JPL), Eli Yablonovich (UCLA), Ananth Dodabalapur (Lucent), George Whitesides (Harvard), Nick Alexopolus (UC Irvine), Will McKenzie (Atlantic Aerospace), Rick Ziolkowski (U Arizona) and Akhlesh Lakhtakia (Penn State U).
  19. Speakers included: Ken Suslick (U Illinois), Bruce Dunn (Penn State U), Ray Baughman (Allied Signals), Chris Murray (IBM), Mike Cima (MIT), Steve Chou (Princeton), and John Halloran (U Michigan).
  20. Team Members included: Xiang Zhang (PI, UC Berkeley), Eli Yablonovitch and Tasuo Itoh (UCLA), Sheldon Schultz and David R. Smith (UCSD), Gang Chen and John Joannopoulus (MIT) and John Pendry (Imperial College); http://xlab.me.berkeley.edu/MURI/muri.html
  21. http://archive.darpa.mil/DARPATech2002/presentations/dso_pdf/speeches/BROWNING.pdf
  22. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 18 (2000) 4184–4187. [CrossRef] [PubMed]
  23. D.R. Smith, N. Kroll, Negative refractive index in left-handed materials, Phys. Rev. Lett. 85, 14 (2000) 2933–2936. [CrossRef] [PubMed]
  24. R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, S. Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett. 78, 4 (2001) 489–491. [CrossRef]
  25. A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292, 5514 (2001) 77–79. [CrossRef] [PubMed]
  26. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 18 (2000) 3966–3969. [CrossRef] [PubMed]
  27. R.W. Ziolkowski, E. Heyman, Wave propagation in media having negative permittivity and permeability, Phys. Rev. E 64 (2001) 056625. [CrossRef]
  28. A. Scherer, T. Doll, E. Yablonovich, H. Everitt, A. Higgins (Guest Eds.), Focus Issue: Artificial and Metallodielectric Electromagnetic Crystals, IEEE Trans. Microwave Theor. Tech., 47, 11 (1999) [CrossRef]
  29. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theor. Tech., 47, 11 (1999) 2075–2081. [CrossRef]
  30. D. Sievenpiper, L. Zhang, R. Broas, N.G. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microwave Theor. Tech. 47, 11 (1999) 2059–2074. [CrossRef]
  31. R. Coccioli, F.-R. Yang, K.-P. Ma, T. Itoh, Aperture-coupled patch antenna on UC-PBG substrate, IEEE Trans. Microwave Theor. Tech. 47, 11 (1999) 2123–2130. [CrossRef]
  32. F.-R. Yang, K.-P. Ma, Y. Qian, T. Itoh, A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure, IEEE Trans. Microwave Theor. Tech. 47, 11 (1999) 2092–2098. [CrossRef]
  33. J. Pendry (Guest Eds.), OSA Focus Issue: Negative Refraction and Metamaterials, Opt. Express 11, 7 (2003)
  34. P. Kolinko, D. Smith, Numerical study of electromagnetic waves interacting with negative index materials, Opt. Express 11, 7 (2003) 640–648. [CrossRef]
  35. P. Markos, C. Soukoulis, Transmission properties and effective electromagnetic parameters of double negative metamaterials, Opt. Express 11, 7 (2003) 649–661. [CrossRef] [PubMed]
  36. R.W. Ziolkowski, Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs, Opt. Express 11, 7 (2003) 662–681. [CrossRef]
  37. N. Fang, Z. Liu, T.-J. Yen, X. Zhang, Regenerating evanescent waves from a silver superlens, Opt. Express 11, 7 (2003) 649–661. [CrossRef] [PubMed]
  38. R. Greegor, C. Parazzoli, K. Li, B. Koltenbah, M. Tanielian, Experimental determination and numerical simulation of the properties of negative index of refraction materials, Opt. Express 11, 7 (2003) 688–695. [CrossRef]
  39. A. Lakhtakia, Handedness reversal of circular Bragg phenomenon due to negative real permittivity and permeability, Opt. Express 11, 7 (2003) 716–722. [CrossRef]
  40. J. Lu, T. Grzegorczyk, Y. Zhang, J. Pacheco Jr, B.-I. Wu, J. Kong, M. Chen, Čerenkov radiation in materials with negative permittivity and permeability, Opt. Express 11, 7 (2003) 723–734. [CrossRef]
  41. V. Podolskiy, A. Sarychev, V. Shalaev, Plasmon modes and negative refraction in metal nanowire composites, Opt. Express 11, 7 (2003) 735–745. [CrossRef]
  42. C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Negative refraction without negative index in metallic photonic crystals, Opt. Express 11, 7 (2003) 746–754. [CrossRef] [PubMed]
  43. S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz, Science 306, 5700 (2004) 1351–1353. [CrossRef] [PubMed]
  44. C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths, Science 315, 5808 (2007) 47–49. [CrossRef] [PubMed]
  45. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nature Photon. 5 (2011) 523–530.
  46. S. Linden, C. Enkrich, G. Dolling, M.W. Klein, J. Zhou, Th. Koschny, C.M. Soukoulis, S. Burger, F. Schmidt, M. Wegener, Photonic metamaterials: magnetism at optical frequencies, IEEE J. Sel. Top. Quantum Electron. 12, 6 (2006) 1097–1105. [CrossRef]
  47. J. Zhou, L. Zhang, G. Tuttle, Th. Koschny, C.M. Soukoulis, Negative index materials using simple short wire pairs, Phys. Rev. B 73 (2006) 041101(R). [CrossRef]
  48. S. Zhang, W. Fan, K.J. Malloy, S.R.J. Brueck, N.C. Panoiu, R.M. Osgood, Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies, J. Opt. Soc. Am. B 23, 3 (2006) 434–438. [CrossRef]
  49. G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Negative-index metamaterial at 780 nm wavelength, Opt. Lett. 32, 1 (2007) 53–55. [CrossRef]
  50. V.M. Shalaev, Optical negative-index metamaterials, Nature Photon. 1 (2007) 41–48. [CrossRef]
  51. U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V.P. Drachev, V.M. Shalaev, Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm, Opt. Lett. 32, 12 (2007) 1671–1673. [CrossRef]
  52. V.M. Shalaev, A. Boardman, Focus issue on Metamaterials, J. Opt. Soc. Am. B 23, 3 (2006)386–387. [CrossRef]
  53. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 308 (2005) 534–537. [CrossRef] [PubMed]
  54. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit, Nature Mater. 7 (2008) 435–441. [CrossRef] [PubMed]
  55. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies, Nature Comms. 1 (2010) 143. [CrossRef]
  56. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature 455 (2008) 376–379. [CrossRef] [PubMed]
  57. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461 (2009) 629–632. [CrossRef] [PubMed]
  58. M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, J.W. Haus, Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks, Opt. Express 15, 2 (2007) 508–523. [CrossRef]
  59. D.L. Jaggard, N. Engheta, ChirosorbTM as an invisible medium, Electron. Lett. 25, 3 (1989) 173–174. [CrossRef]
  60. M.M.I. Saadoun, N. Engheta, A reciprocal phase shifter using novel pseudochiral or Ω medium, Microw. Opt. Technol. Lett. 5, 4 (1992) 184–188. [CrossRef]
  61. L.-X. Ran, J.T. Huang-Fu, H. Chen, X.-M. Zhang, K.S. Chen, T.M. Grzegorczyk, J.A. Kong, Experimental study on several left-handed metamaterials, Progress Electromagn. Res. 51 (2005) 249–279. [CrossRef]
  62. N. Engheta, A. Salandrino, A. Alù, Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors, Phys. Rev. Lett. 95, 9 (2005) 095504. [CrossRef]
  63. N. Engheta, Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials, Science 317, 5845 (2007) 1698–1702. [CrossRef] [PubMed]
  64. N. Engheta, From RF circuits to optical nanocircuits, IEEE Microw. Mag. 13, 4 (2012) 100–113. [CrossRef]
  65. A. Alù, N. Engheta, Tuning the scattering response of optical nanoantennas with nanocircuit loads, Nature Photon. 2 (2008) 307–310. [CrossRef]
  66. A. Alù, N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Phys. Rev. Lett. 101 (2008) 043901. [CrossRef]
  67. J.M. Williams, Some problems with negative refraction, Phys. Rev. Lett. 87, 24 (2001) 249703. [CrossRef]
  68. G.W. ‘t Hooft, Comment on “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 87, 24 (2001) 249701. [CrossRef] [PubMed]
  69. D. Maystre, S. Enoch, Perfect lenses made with left-handed materials: Alice’s mirror? J. Opt. Soc. Am. A 21, 1 (2004) 122–131. [CrossRef]
  70. N. Garcia, M. Nieto-Vesperinas, Left-handed materials do not make a perfect lens, Phys. Rev. Lett. 88, 20 (2002) 207403. [CrossRef] [PubMed]
  71. N. Garcia, M. Nieto-Vesperinas, Is there an experimental verification of a negative index of refraction yet? Opt. Lett. 27, 11 (2002) 885–887. [CrossRef]
  72. P.M. Valanju, R.M. Walser, A.P. Valanju, Wave refraction in negative-index media: always positive and very inhomogeneous, Phys. Rev. Lett. 88 (2002) 187401. [CrossRef] [PubMed]
  73. J.B. Pendry, D.R. Smith, Comment on “Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous”, Phys. Rev. Lett. 90 (2003) 029703. [CrossRef]
  74. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Experimental verification and simulation of negative index of refraction using Snell’s law, Phys. Rev. Lett. 90, 10 (2003) 107401. [CrossRef] [PubMed]
  75. J.B. Pendry, D.R. Smith, Reversing light with negative refraction, Physics Today 57, 6 (2004) 37–43; cover photo: “The Boeing cube”: a structure designed for negative refractive index in the GHz range. [CrossRef]
  76. V. Browning. DARPA Workshop on Negative Index MetaMaterials, May 2003. Participants included: V. Veselago (Moscow Institute of Physics and Technology, Russia), David Smith (UCSD), C. Parazzoli (Boeing), T. Schaefer (Mayo Clinic), J. Kong (MIT), Douglas Smith (NRL), S. Schultz (UCSD), R. Ziolkowski (UA), N. Engheta (U Penn), S. Sridhar (Northeastern), C. Caloz and T. Itoh (UCLA), A. Lakhtakia (PSU), C. Krowne (NRL), V. Agranovich (Institute of Spectroscopy, Russia), and D. Sievenpiper (HRL).
  77. R.W. Ziolkowski, Design, fabrication, and testing of double negative metamaterials, IEEE Trans. Antennas Propag. 51, 7 (2003) 1516–1529. [NASA ADS] [CrossRef] [PubMed]
  78. N. Engheta, An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability, IEEE Antennas Wireless Propag. 1, 1 (2002) 10–13. [CrossRef]
  79. R.W. Ziolkowski, Ultra-thin metamaterial-based laser cavities, J. Opt. Soc. Am. B 23 (2006) 451–460. [CrossRef]
  80. A. Grbic, G.V. Eleftheriades, Negative refraction, growing evanescent waves, and sub-diffraction imaging in loaded transmission-line metamaterials, IEEE Microwave Theor. Tech. 51, 12 (2003) 2297–2305. [CrossRef]
  81. A. Lai, T. Itoh, C. Caloz, Composite right/left-handed transmission line metamaterials, IEEE Microw. Mag. 5, 3 (2004) 34–50. [CrossRef]
  82. A. Grbic, G.V. Eleftheriades, Experimental verification of backward-wave radiation from a negative refractive index metamaterial, J. Appl. Phys. 92, 10 (2002) 5930–5935. [CrossRef]
  83. L. Liu, C. Caloz, T. Itoh, Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability, Electron. Lett. 38, 23 (2002) 1414–1416. [CrossRef]
  84. F. Yang, Y. Rahmat-Samii, A low-profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface, Microw. Opt. Tech. Lett. 31, 4 (2001) 264–267. [CrossRef]
  85. R. Gonzalo, P. de Maagt, M. Sorolla, Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates, IEEE Trans. Microwave Theor. Tech. 47, 11 (1999) 2123–2130. [CrossRef]
  86. R.W. Ziolkowski, N. Engheta (Guest Eds.), Special Issue on Metamaterials, IEEE Trans. Antennas Propag., 51, 10 (2003).
  87. T. Itoh, A.A. Oliner, Special Issue on Metamaterials, IEEE Trans. Microwave Theor. Tech. 53, 4 (2005).
  88. R.W. Ziolkowski, A.D. Kipple, Application of double negative metamaterials to increase the power radiated by electrically small antennas, IEEE Trans. Antennas Propag. 51, 10 (2003) 2626–2640. [CrossRef]
  89. R.W. Ziolkowski, P. Jin, C.-C. Lin, Metamaterial-inspired engineering of antennas, Proc. IEEE 99, 10 (2011) 1720–1731. [CrossRef]
  90. A. Erentok, P. Luljak, R.W. Ziolkowski, Antenna performance near a volumetric metamaterial realization of an artificial magnetic conductor, IEEE Trans. Antennas Propag. 53, 1 (2005) 160–172. [CrossRef]
  91. A. Alú, N. Engheta, Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency, IEEE Trans. Antennas Propag. 51, 10 (2003) 2558–2571. [CrossRef]
  92. A. Alú, N. Engheta, Plasmonic materials in transparency and cloaking problems: Mechanism, robustness and physical insights, Opt. Express 15, 6 (2007) 3318–3332. [CrossRef]
  93. A. Alú, N. Engheta, Plasmonic and metamaterial cloaking: physical mechanisms and potentials, J. Opt. A: Pure Appl. Opt. 10 (2008) 093002. [CrossRef]
  94. B. Edwards, M. Silveirinha, N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Phys. Rev. Lett. 103, 15 (2009) 153901. [CrossRef]
  95. D.F. Sievenpiper, J.H. Schaffner, H.J. Song, R.Y. Loo, G. Tangonan, Two-dimensional beam steering using an electrically tunable impedance surface, IEEE Trans. Antennas Propag. 51, 10 (2003) 2713–2722. [CrossRef]
  96. F. Yang, Y. Rahmat-Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Trans. Antennas Propag. 51, 10 (2003) 2691–2703. [CrossRef]
  97. F. Yang, Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications, IEEE Trans. Antennas Propag. 51, 10 (2003) 2936–2946. [CrossRef]
  98. F. Yang, Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, Cambridge, 2009.
  99. S. Clavijo, R.E. Diaz, W.E. McKinzie III, Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas, IEEE Trans. Antennas Propag. 51, 10 (2003) 2678–2690. [CrossRef]
  100. G. Kiziltas, D. Psychoudakis, J.L. Volakis, N. Kikuchi, Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna, IEEE Trans. Antennas Propag. 51, 10 (2003) 2732–2743. [CrossRef]
  101. G. Mumcu, K. Sertel, J.L. Volakis, Miniature antennas and arrays embedded within magnetic photonic crystals, IEEE Antennas Wireless Propag. Lett. 5, 1 (2006) 168–171. [CrossRef]
  102. G. Mumcu, K. Sertel, J.L. Volakis, Miniature antenna using printed coupled lines emulating degenerate band edge crystals, IEEE Trans. Antennas Propag. 57, 6 (2009) 1618–1624. [CrossRef]
  103. J.L. Volakis, K. Sertel, Narrowband and wideband metamaterial antennas based on degenerate band edge and magnetic photonic crystals, Proc. IEEE 99, 10 (2011) 1732–1745. [CrossRef]
  104. H. Mosallaei, K. Sarabandi, Magneto-dielectrics in electromagnetics: Concept and applications, IEEE Trans. Antennas Propag. 52, 6 (2004) 1558–1567. [CrossRef]
  105. K. Buell, H. Mosallaei, K. Sarabandi, A substrate for small patch antennas providing tunable miniaturization factors, IEEE Trans. Microwave Theor. Tech. 54, 1 (2006) 135–146. [CrossRef]
  106. H. Mosallaei, K. Sarabandi, Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate, IEEE Trans. Antennas Propag. 55, 1 (2007) 45–52. [CrossRef]
  107. M. Kashanianfard, K. Sarabandi, Metamaterial inspired optically transparent band-selective ground planes for antenna applications, IEEE Trans. Antennas Propag. 61, 9 (2013) 4624–4631. [CrossRef]
  108. C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix, IEEE Trans. Antennas Propag. 51, 10 (2003) 2596–2603. [CrossRef]
  109. E.F. Kuester, M.A. Mohamed, M. Piket-May, C.L. Holloway, Averaged transition conditions for electromagnetic fields at a metafilm, IEEE Trans. Antennas Propag. 51, 10 (2003) 2641–2651. [CrossRef]
  110. C.L. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials, Metamaterials 3, 2 (2009) 100–112. [CrossRef]
  111. C.L. Holloway, E.F. Kuester, A. Dienstfrey, Characterizing metasurfaces/metafilms: The connection between surface susceptibilities and effective material properties, IEEE Antennas Wireless Propag. Lett. 10 (2011) 1507–1511. [CrossRef]
  112. C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54, 2 (2012) 10–35. [CrossRef]
  113. M.A. Antoniades, G.V. Eleftheriades, Compact linear lead/lag metamaterial phase shifters for broadband applications, IEEE Antennas Wireless Propag. Lett. 2, 1 (2003) 103–106. [CrossRef]
  114. Y. Horii, C. Caloz, T. Itoh, Super-compact multilayered left-handed transmission line and diplexer application, IEEE Trans. Microwave Theor. Tech. 53, 4 (2005) 1527–1534. [CrossRef]
  115. C. Caloz, T. Itoh, A. Rennings, CRLH metamaterial leaky-wave and resonant antennas, IEEE Antennas Propag. Mag. 50, 5 (2008) 25–39. [CrossRef]
  116. Y. Dong, T. Itoh, Metamaterial-based antennas, Proc. IEEE 100, 7 (2012) 2271–2285. [CrossRef]
  117. G.V. Eleftheriades, N. Engheta (Guest Eds.), Special Issue on metamaterials: fundamentals and applications in the microwave and optical regimes, Proc. IEEE, 99, 10 (2011). [CrossRef]
  118. Second DARPA MURI on Metamaterials. It was led by a Boeing Phantom Works (now Boeing Research and Technology) team. The principals at Boeing were Drs. M. Tanielian and C. Parazzoli. The university and national laboratory principals were: UCSD, S. Schultz and D. Vier; Duke, S. Cummer and D. Smith; U. Penn, N. Engheta; UAz, R.W. Ziolkowski; ISU, C. Soukoulis; UT Austin, G. Shvets; and NIST-Boulder, C. Holloway
  119. A. Erentok, R.W. Ziolkowski, J.A. Nielsen, R.B. Greegor, C.G. Parazzoli, M.H. Tanielian, S.A. Cummer, B.-I. Popa, T. Hand, D.C. Vier, S. Schultz, Low frequency lumped element-based negative index metamaterial, Appl. Phys. Lett. 91 (2007) 184104. [CrossRef]
  120. A. Erentok, R.W. Ziolkowski, J.A. Nielsen, R.B. Greegor, C.G. Parazzoli, M.H. Tanielian, S.A. Cummer, B.-I. Popa, T. Hand, D.C. Vier, S. Schultz, Lumped element-based, highly sub-wavelength negative index metamaterials at UHF Frequencies, J. Appl. Phys. 104, 3 (2008) 034901. [CrossRef]
  121. S.A. Tretyakov, Meta-materials with wideband negative permittivity and permeability, Microw. Opt. Technol. Lett. 31, 3 (2001) 163–165. [CrossRef]
  122. B.-I. Popa, S.A. Cummer, An architecture for active metamaterial particles and experimental validation at RF, Microw. Opt. Technol. Lett. 49, 10 (2007) 2574–2577. [CrossRef]
  123. Y. Yuan, B.-I. Popa, S.A. Cummer, Zero loss magnetic metamaterials using powered active unit cells, Opt. Express 17, 18 (2009) 16135–16143. [CrossRef]
  124. B.-I. Popa, S.A. Cummer, Nonreciprocal active metamaterials, Phys. Rev. B 85, 20 (2012) 205101. [CrossRef]
  125. S. Hrabar, I. Krois, A. Kiricenko, Towards active dispersionless ENZ metamaterial for cloaking applications, Metamaterials 4, 2 (2010) 89–97. [CrossRef]
  126. S. Hrabar, I. Krois, I. Bonic, A. Kiricenko, Negative capacitor paves the way to ultra-broadband metamaterials, Appl. Phys. Lett. 99, 25 (2011) 254103. [CrossRef]
  127. S. Hrabar, I. Krois, I. Bonic, A. Kiricenko, Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterial, Appl. Phys. Lett. 102, 5 (2013) 054108. [CrossRef]
  128. D.F. Sievenpiper, Superluminal waveguides based on non-Foster circuits for broadband leaky-wave antennas, IEEE Antennas Wireless Propag. Lett. 10 (2011) 231–234. [CrossRef]
  129. A.A. Zharov, I.V. Shadrivov, Y.S. Kivshar, Nonlinear properties of left-handed metamaterials, Phys. Rev. Lett. 91, 3 (2003) 037401. [CrossRef] [PubMed]
  130. I.V. Shadrivov, S.K. Morrison, Y.S. Kivshar, Tunable split-ring resonators for nonlinear negative-index metamaterials, Opt. Express 14, 20 (2006) 9344–9349. [CrossRef]
  131. D.A. Powell, I.V. Shadrivov, Y.S. Kivshar, M.V. Gorkunov, Self-tuning mechanisms of nonlinear split-ring resonators, Appl. Phys. Lett. 91, 14 (2007) 144107. [CrossRef]
  132. S. Saadat, M. Adnan, H. Mosallaei, E. Afshari, Composite metamaterial and metasurface integrated with non-Foster active circuit elements: A bandwidth-enhancement investigation, IEEE Trans. Antennas Propag. 61, 3 (2013) 1210–1218. [CrossRef]
  133. M. Barbuto, A. Monti, F. Bilotti, A. Toscano, Design of a non-Foster actively loaded SRR and application in metamaterial-inspired components, IEEE Trans. Antennas Propag. 61, 3 (2013) 1219–1227. [CrossRef]
  134. N. Zhu, R.W. Ziolkowski, Broad bandwidth, electrically small antenna augmented with an internal non-Foster element, IEEE Antennas Wireless Propag. Lett. 11 (2012) 1116–1120. [CrossRef]
  135. N. Zhu, R.W. Ziolkowski, Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna, Appl. Phys. Lett. 101 (2012) 024107. [CrossRef]
  136. M.-C. Tang, N. Zhu, R.W. Ziolkowski, Augmenting a modified Egyptian axe dipole antenna with non-Foster elements to enlarge its directivity bandwidth, IEEE Antennas Wireless Propag. Lett. 12 (2013) 421–424. [CrossRef]
  137. N. Zhu, R.W. Ziolkowski, Broad bandwidth, electrically small, non-Foster element-augmented antenna designs, analyses, and measurements, IEICE Trans. Commun. E96-B, 10 (2013) 2399–2409. [CrossRef]
  138. R.W. Ziolkowski, M.-C. Tang, N. Zhu, An efficient, broad bandwidth, high directivity, electrically small antenna, Microw. Opt. Technol. Lett. 55, 6 (2013) 1430–1434. [CrossRef]
  139. H. Mirzaei, G.V. Eleftheriades, A resonant printed monopole antenna with an embedded non-Foster matching network, IEEE Trans. Antennas Propag. 61, 11 (2013) 5363–5371. [CrossRef]
  140. H. Mirzaei, G.V. Eleftheriades, Realizing non-Foster reactive elements using negative-group-delay networks, IEEE Trans. Microwave Theor. Tech. 61, 12 (2013) 4322–4332. [CrossRef]
  141. E. Ugarte-Munoz, S. Hrabar, D. Segovia-Vargas, A. Kiricenko, Stability of non-Foster reactive elements for use in active metamaterials and antennas, IEEE Trans. Antennas Propag. 60 (2012) 3490–3494. [CrossRef]
  142. Y. Fan, K.Z. Rajab, Y. Hao, Noise analysis of broadband active metamaterials with non-Foster loads, J. Appl. Phys. 113, 23 (2013) 233905. [CrossRef]
  143. H.-T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices, Nature 444 (2006) 597–600. [CrossRef] [PubMed]
  144. T.A. Klar, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Negative-index metamaterials: going optical, IEEE J. Sel. Top. Quantum Electron. 12, 6 (2006) 1106–1115. [CrossRef]
  145. S. Xiao, V.P. Drachev, A.V. Kildishev, X. Ni, U.K. Chettiar, H.-K. Yuan, V.M. Shalaev, Loss-free and active optical negative-index metamaterials, Nature 466, 7307 (2010) 735–738. [CrossRef]
  146. J.A. Gordon, R.W. Ziolkowski, The design and simulated performance of a coated nano-particle laser, Opt. Express 15 (2007) 2622–2653. [CrossRef]
  147. J.A. Gordon, R.W. Ziolkowski, Optical CNP metamaterials, Opt. Express 16 (2008) 6692–6716. [CrossRef] [PubMed]
  148. S. Arslanagić, R.W. Ziolkowski, Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole – resonance and transparency effects, J. Opt. 12 (2010) 024014. [CrossRef]
  149. R.W. Ziolkowski, S. Arslanagić, J. Geng, Where high-frequency engineering advances optics: active nanoparticles as nanoantennas, in: A. Alú, M. Agio (Eds.), Optical Antennas, Cambridge University Press, London, 2012, pp. 46–63, Chap. 4. [CrossRef]
  150. S. Arslanagić, R.W. Ziolkowski, Jamming of quantum emitters by active coated nano-particles, IEEE J. Sel. Top. Quantum Electron. 19, 3 (2013) 4800506. [CrossRef]
  151. N. Meinzer, M. Ruther, S. Linden, C.M. Soukoulis, G. Khitrova, J. Hendrickson, J.D. Olitzky, H.M. Gibbs, M. Wegener, Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain, Opt. Express 18, 23 (2010) 24140–24151. [CrossRef]
  152. Z. Huang, Th. Koschny, C.M. Soukoulis, Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium, Phys. Rev. Lett. 108, 18 (2012) 187402. [CrossRef]
  153. O. Hess, J.B. Pendry, S.A. Maier, R.F. Oulton, J.M. Hamm, K.L. Tsakmakidis, Active nanoplasmonic metamaterials, Nature Mater. 11, 7 (2012) 573–584. [CrossRef] [PubMed]
  154. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314, 5801 (2006) 977–980. [CrossRef] [PubMed]
  155. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312, 5781 (2006) 1780–1782. [CrossRef] [MathSciNet] [PubMed]
  156. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100, 20 (2008) 207402. [CrossRef] [PubMed]
  157. M.G. Silveirinha, N. Engheta, Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials, Phys. Rev. B 76, 24 (2007) 245109. [CrossRef]
  158. B. Edwards, A. Alù, M.E. Young, M. Silveirinha, N. Engheta, Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide, Phys. Rev. Lett. 100, 3 (2008) 033903. [CrossRef]
  159. A. Sanada, C. Caloz, T. Itoh, Characteristics of the composite right/left-handed transmission lines, IEEE Microw. Wireless Compon. Lett. 14, 2 (2004) 68–70. [CrossRef]
  160. A. Lai, K.M.K.H. Leong, T. Itoh, Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures, IEEE Trans. Antennas Propag. 55, 3 (2007) 868–876. [CrossRef]
  161. R.W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero index of refraction, Phys. Rev. E 70 (2004) 046608. [CrossRef]
  162. A. Alù, M.G. Silveirinha, A. Salandrino, N. Engheta, Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern, Phys. Rev. B 75, 15 (2007) 155410. [CrossRef]
  163. N. Engheta, R.W. Ziolkowski (Eds.), Metamaterials – Physics and Engineering Explorations, Wiley-IEEE Press, Hoboken, NJ, 2006.
  164. G.V. Eleftheriades, K.G. Balmain (Eds.), Negative-Refraction Metamaterials, Wiley-IEEE Press, Hoboken, NJ, 2005. [CrossRef]
  165. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, Hoboken, NJ, 2005. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.