Open Access
Issue
EPJ Applied Metamaterials
Volume 1, 2014
Article Number 3
Number of page(s) 12
DOI https://doi.org/10.1051/epjam/2014001
Published online 13 June 2014
  1. IEEE Transactions on Antennas and Propagation, Special Issue on Metamaterials, 51 (2003) 10
  2. D. Polder, Phil. Mag. 40 (1949) 99–115.
  3. H. Gundel, H. Riege, E.J.N. Wilson, J. Handerek, K. Zioutas, Nucl. Instrum. Methods Phys. Res. A 280 (1989) 1–6. [CrossRef]
  4. X. Zuo, H. How, S.A. Oliver, C. Vittoria, IEEE Trans. Magn. 37 (2001) 4.
  5. J.L. Volakis, C.C. Chen, K. Fujimoto, Small antennas: Miniaturization techniques and applications, McGraw-Hill, 2010.
  6. R.C. Hansen, in Antenna Engineering Handbook, edited by J.L. Volakis, 4th ed. McGraw-Hill, New York, 2007.
  7. A.A. Oliner, David R. Jackson, in Antenna Engineering Handbook, edited by J.L. Volakis, 4th ed., McGraw-Hill, New York, 2007.
  8. S. Lim, C. Caloz, Tatsuo Itoh, IEEE Trans. Microw. Theory Tech. 52 (2004) 12.
  9. B.C.C. Chang, Y. Qian, T. Itoh, in Proceedings of the IEEE Int. Symp. Antennas Propagation Society, Orlando, FL, vol. 4, 1999, pp. 2694–2697.
  10. D. Sievenpiper, J. Schaffner, J.J. Lee, S. Livingston, IEEE Antennas Wirel. Propag. Lett. 1 (2002) [CrossRef]
  11. N. Apaydin, L. Zhang, K. Sertel, J.L. Volakis, Proceedings of the IEEE Int. Symp. Antennas Propagation Society, Chicago, IL, 2012, pp. 1–4.
  12. N. Apaydin, K. Sertel, J.L. Volakis, Nonreciprocal leaky-wave antenna based on coupled microstrip lines on a non-uniformly biased ferrite substrate, IEEE Trans. Antennas Propag. 61 (2013) 7. [CrossRef]
  13. H. Maheri, M. Tsutsumi, N. Kumagai, Experimental studies of magnetically scannable leaky-wave antennas having a corrugated ferrite slab/dielectric layer structure, IEEE Trans. Antennas Propag. 36, 7 (1988) 911–917. [CrossRef]
  14. T. Kodera, C. Caloz, Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a Novel backfire-to-endfire leaky-wave antenna, IEEE Trans. Microwave Theory Tech. 57 (2009) 784–795. [CrossRef]
  15. P. Baccarelli, C. Di Nallo, F. Frezza, A. Galli, P. Lampariello, Attractive features of leaky-wave antennas based on ferrite-loaded open waveguides, Antennas and Propagation Society Int. Symp., Montreal, QC, 1997, pp. 1442–1445.
  16. T. Kodera, C. Caloz, Integrated leaky-wave antenna-duplexer/diplexer using crlh uniform ferrite-loaded open waveguide, IEEE Trans. Antennas Propag. 58, 8 (2010) 2508–2514. [CrossRef]
  17. T. Ueda, K. Horikawa, M. Akiyama, M. Tsutsumi, Nonreciprocal phase-shift composite right/left handed transmission lines and their application to leaky wave antennas, IEEE Trans. Antennas Propag. 57, 7 (2009) 1995–2005. [CrossRef]
  18. C. Caloz, T. Itoh, “Radiated-wave applications” in Electromagnetic metamaterials: transmission line theory and microwave applications, Wiley, Hoboken, NJ, 2006, pp. 261–310.
  19. C. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys. 103, 031101 (2008) 1–32.
  20. S. Paulotto, P. Baccarelli, F. Frezza, D.R. Jackson, A novel technique for open-stopband suppression in 1-d periodic printed leaky-wave antennas, IEEE Trans. Antennas Propag. 57, 7 (2009) 1894–1906. [CrossRef]
  21. N. Apaydin, L. Zhang, K. Sertel, J.L. Volakis, Experimental validation of frozen modes guided on printed coupled transmission lines, IEEE Trans. Microwave Theory Tech. 60, 6 (2012) 1513–1518. [CrossRef]
  22. T. Ueda, K. Horikawa, M. Akiyama, M. Tsutsumi, Nonreciprocal phase-shift composite right/left handed transmission lines and their application to leaky wave antennas, IEEE Trans. Antennas Propag. 57 7 (2009) 1995–2005. [CrossRef]
  23. R.I. Joseph, E. Schlomann, Demagnetizing field in nonellipsoidal bodies, J. Appl. Phys. 36, 5 (1965) 1579–1592. [CrossRef]
  24. N. Apaydin, K. Sertel, J.L. Volakis, Nonreciprocal and magnetically scanned leaky-wave antenna using coupled CRLH lines, IEEE Trans. Antennas Propag. 62 (2014) 6.
  25. Y.K. Fetisov, G. Srinivasanan, Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator, Appl. Phys. Lett. 88 (2006) 143503. [CrossRef]
  26. G. Srinivasan, Electric field tunable microwave and mm wave ferrite devices, Final Report on ONR Contract No. N00014–06-1-0167, Oakland University, 2010.
  27. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and application of microwave ferrites, Elsevier J. Magnetism Magn. Mater. 321 (2009) 2035–2047. [CrossRef]
  28. A.S. Tatarenko, V. Gheevarughese, G. Srinivasanan, Magnetoelectric microwave bandpass filter, Electron. Lett. 42 (2006) 9. [CrossRef]
  29. Y. Chen, J. Wang, M. Liu, N.X. Sun, C. Vittoria, V.G. Harris, Giant magnetoelectric coupling and e-field tunability in a laminated Ni2mnga/lead-magnesium-niobate-lead titanate multiferroic heterostructure, Appl. Phys. Lett. 93, 112502 (2008) 1–4.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.